This is the public, feature-limited version of the conference webpage. After Registration and login please visit the full version.

Neural Message Passing for Multi-Relational Ordered and Recursive Hypergraphs

Naganand Yadati

Poster Session 7 (more posters)
on 2020-12-10T21:00:00-08:00 - 2020-12-10T23:00:00-08:00
Abstract: Message passing neural network (MPNN) has recently emerged as a successful framework by achieving state-of-the-art performances on many graph-based learning tasks. MPNN has also recently been extended to multi-relational graphs (each edge is labelled), and hypergraphs (each edge can connect any number of vertices). However, in real-world datasets involving text and knowledge, relationships are much more complex in which hyperedges can be multi-relational, recursive, and ordered. Such structures present several unique challenges because it is not clear how to adapt MPNN to variable-sized hyperedges in them. In this work, we first unify exisiting MPNNs on different structures into G-MPNN (Generalised MPNN) framework. Motivated by real-world datasets, we then propose a novel extension of the framework, MPNN-R (MPNN-Recursive) to handle recursively-structured data. Experimental results demonstrate the effectiveness of proposed G-MPNN and MPNN-R.

Preview Video and Chat

To see video, interact with the author and ask questions please use registration and login.