This is the public, feature-limited version of the conference webpage. After Registration and login please visit the full version.

ExpandNets: Linear Over-parameterization to Train Compact Convolutional Networks

Shuxuan Guo, Jose M. Alvarez, Mathieu Salzmann

Spotlight presentation: Orals & Spotlights Track 08: Deep Learning
on 2020-12-08T08:00:00-08:00 - 2020-12-08T08:10:00-08:00
Poster Session 2 (more posters)
on 2020-12-08T09:00:00-08:00 - 2020-12-08T11:00:00-08:00
Abstract: We introduce an approach to training a given compact network. To this end, we leverage over-parameterization, which typically improves both neural network optimization and generalization. Specifically, we propose to expand each linear layer of the compact network into multiple consecutive linear layers, without adding any nonlinearity. As such, the resulting expanded network, or ExpandNet, can be contracted back to the compact one algebraically at inference. In particular, we introduce two convolutional expansion strategies and demonstrate their benefits on several tasks, including image classification, object detection, and semantic segmentation. As evidenced by our experiments, our approach outperforms both training the compact network from scratch and performing knowledge distillation from a teacher. Furthermore, our linear over-parameterization empirically reduces gradient confusion during training and improves the network generalization.

Preview Video and Chat

To see video, interact with the author and ask questions please use registration and login.