%

®

Hyperbolic Neural Networks

Octavian-Eugen Ganea* Gary Bécigneul”*
Department of Computer Science Department of Computer Science
ETH Ziirich ETH Ziirich
Zurich, Switzerland Zurich, Switzerland
octavian.ganea@inf.ethz.ch gary.becigneul@inf.ethz.ch

Thomas Hofmann
Department of Computer Science
ETH Ziirich
Zurich, Switzerland
thomas.hofmann@inf.ethz.ch



Use hyperbolic space instead of Euclidean space
for embedding data with a latent hierarchical structure



Use hyperbolic space instead of Euclidean space
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The volume of a ball grows
exponentially with its
radius!



Use hyperbolic space instead of Euclidean space
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Image source: http://prior.sigchi.org

Similarly as for a tree: the number of nodes
grows exponentially with the tree depth!

exponentially with its
radius!



Use hyperbolic space instead of Euclidean space
for embedding data with a latent hierarchical structure

Hot topic in ML since

Poincaré Embeddings for Learning
Hierarchical Representations,

Nickel & Kiela, (NIPS 2017)

Image source: http://prior.sigchi.org



Difficulties

- HOW TO USE HYPERBOLIC EMBEDDINGS IN DOWNSTREAM
TASKS ?

- HOW TO FEED HYPERBOLIC EMBEDDINGS TO NEURAL NETS ?
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Difficulties

- HOW TO USE HYPERBOLIC EMBEDDINGS IN DOWNSTREAM
TASKS ?

- HOW TO FEED HYPERBOLIC EMBEDDINGS TO NEURAL NETS ?

e basic Euclidean operations not defined
in the hyperbolic space! e.g. vector addi-
tion should follow hyperbolic " straight-
lines”, i.e. geodesics

e ncural networks should not ignore the
hyperbolic geometry (e.g. how to en-
force hyperbolicity of an RNN’s hidden
states ?)




Poincaré Ball
D" = {x € R" c||z|j; < 1}
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Poincaré Ball
D" = {x € R" c||z|j; < 1}

d.(x.y) = (2/ve)tanh ™ (Ve| — = Beyl|) .



Use Gyro-vector spaces to generalize basic operations and neural
networks from Euclidean to hyperbolic spaces:

e Gyro-vs: - analogue of Euclidean vector spaces
- used in relativity theory (speeds of particles are hyperbolic)

e Vector addition z +vy < D,y

e Scalar multiplication rx < r ®.x
—Closed form distance d.(z, y) = (2//c)tanh™" (\/c|| — = &, y||)

—Closed form geodesics: 7v,,,(t) =2 ®. (—x B, y) @, t




Our contributions

1) We connect Gyro-vs and Riemannian hyperbolic geometry
T\M

e Closed form exp,(v), log,(y)

e Closed form parallel transport (move
across tangent spaces)

r x,a*" \
\/ .
s

Image sources: stackexchange.com, wikipedia.org



Our contributions

2) Hyperbolic Feed-forward Neural Networks

e Mobius version of [ : R" — R™ (e.g. pointwise non-linearity):

forDE = DY, fP(w) = expp(f (logo()))



Our contributions

2) Hyperbolic Feed-forward Neural Networks

e Mobius version of [ : R" — R™ (e.g. pointwise non-linearity):

FoDE = DY, [5(w) = expi(f (logg(2)))
e Matrix - vector multiplication:

- M x
tanh%x/ém))
E

— Properties: matrix associativity, scalar-matrix associativity, pre-
served rotations

| Mzx||

||

M®(x) = (1/+/c) tanh (



Our contributions

3) Hyperbolic Softmax layer - Multiclass Logistic Regression

e Hyperbolic hyperplane:
Egjp ={xeD!': (—p®.x,a) =0}

¢ Theorem: closed form of d,.(x, H gjp)

e Final MLR formula (based on Lebanon =
and Lafferty,2004): o r——

\C | o Jol
19(’9' = k’|33) X exp p"‘”akH sinh ™! ( \/E< Pk Dc T, ?k> )
Ve (1 —cll — pr @c =[x



Our contributions

4) Hyperbolic Recurrent Networks, e.g. hGRU

(

hyp-GRU < <

\

ry = o logg(W" ®c hi_1 B U" Q. x4 B b")
he = % ((Wdiag(r;)) ®c hi—1 ®e U Q¢ x4 B b)
hi = hy_1 ©. diag(z) @, (—hi—1 S hy)

e Hyperbolic hidden states

Theorem: update-gate mechanism derived from time-warping
invariance principle (via gyro-derivative and gyro-chain-rule)



Property: All our models recover their Euclidean variants
when curvature ¢ — ).



Riemannian Optimization

e Both Euclidean and hyperbolic parameters
e Riemannian SGD:

z <+ expt(—nVEL), =z €D

e Riemannian gradient:

2

VEL = (1/X%)?V,L, conformal factor A6 =

1 — cf|a]|?

Image source: stackexchange.com
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Experiments

1) Textual Entailment tasks (semantic + syntactic).

TEST ACCURACY SNLI |PREFIX-10% PREFIX-30% | PREFIX-50%
FULLY EUCLIDEAN RNN 79.34 % 89.62 % 81.71 % 72.10 %
Hyp RNN+FFNN, EucL MLR |79.18 % 96.36 % 87.83 % 76.50 %
FULLY HYPERBOLIC RNN ||78.21 % 96.91 % 87.25 % 62.94 %
FULLY EUCLIDEAN GRU 81.52 % 95.96 % 86.47 % 75.04 %
HYP GRU+FFNN, EucL MLR |79.76 % 97.36 % 88.47 % 76.87 %
FUuLLY HYPERBOLIC GRU | 81.19 % 97.14 % 88.26 % 76.44 %

All word and sentence embeddings have dimension 5.




Experiments

2) MLR experiments.

Test F1 classification scores () for 4 subtrees of the WordNet tree.

WORDNET ., 0 D=2 D=3 D=5 D=10
SUBTREE
Hyp | 47.43 +1.07 |91.92+ 0.61|98.07 + 0.55| 99.26 + 0.59
ANIMAL.N.O1 . _ , L
1%/ 70s | BUCL | 41604019 | 68434390 | 95.59 4 118 | 99.36 + 0.18
| lozg | 38.804+0.01 | 62574061 |89.21 +1.34 | 98.27+0.70
ooy | HYP | 8L72£0.17 [89.87 £2.73(87.89£ 080 9191 +3.07
Ceno 11797 | BUCL | GLI34042 | 6356£1.22 | 67.824081 |91.38+1.19
| logg | 60.754+0.24 | 61.9840.57 | 67.92+0.74 | 91.41 + 0.18
Hyr | 12.68 £0.82 [24.00 = 1.49|55.46 + 5.4966.83 + 11.38
WORKER.N.01 | i | _ | o
Y1 5ea | EUCL | 10864001 | 22394004 | 35234316 | 47204 3.93
logg | 9.04+0.06 |225740.20 | 2647+ 0.78 | 36.66+ 2.74
it o1 | HYP 3201+ 1714|8754 & 455(88.73 + 3.22| 91.37 + 6.09
053 1796 | EUCL | 15.58 £0.04 | 44684 1.87 | 59.354 131 | 77.76 4 5.08
| logpg | 13.10+£0.13 | 44.89+1.18 | 52.51 £0.85 | 56.11 4 2.21




Experiments

Hyperbolic (left) vs Direct Euclidean (right) binary MLR used to
classify nodes as being part in the GROUP.N.O 1 subtree of the Word-
Net noun hierarchy solely based on their Poincaré embeddings.



THANK YOU!

Please visit our website: HD !

hyperbolicdeeplearning.com
HYPERBOLIC DEEP LEARNING

A nascent and promising field

Octavian Ganea
is currently looking for postdoctoral positions!



Matrix-vector multiplication

We define;

| M|
||

Mz
| Mz||

M®:(z) = (1/+/c) tanh ( ta,nh_l(\fEH:-:H))
Nice properties:

e Matrix associativity M@(N®z) =(MN)®@z
Compatibility with scalar multiplication: M ®@(r®z) =(rM )@z =r®(M )
e Directions are preserved: M ®@z /|| M @z ||= Mz /|| Mz || for Mrz:%O
Rotations are preserved: M @ x = Mz for M € O,,(R)



Matrix-vector multiplication

|Mz|
||

Mz
[ M|

M®*(2) = (1/ve) tanh (1 tanh ™ (V)

When the curvature c goes to zero, it recovers the usual
matrix multiplication!

lim. .o M®(x) = Mz



