Interactive structure learning with structural query-by-committee

Christopher Tosh Sanjoy Dasgupta

Columbia University UC San Diego

Poster: # 130

The problem with traditional learning frameworks

Supervised learning issues:

Unsupervised learning issues:

Learning with interaction

Previous approaches:

Learning with interaction

Previous approaches:

Drawbacks:

- Specialized algorithms for different tasks
- Requires a user to answer every question

Interactive structure learning

Interactive structure learning

Features:

- Snapshots of structures (context)
- Partial correction

Interactive structure learning

Generalizes:

- Active learning with label queries
- Interactive clustering with pairwise constraints
- Interactive hierarchical clustering with triplet constraints

Generic interactive learning scheme

Interactive structure learning protocol:

- Maintain a posterior π_t over structures
- For t = 1, 2, ...:
 - Select subset S and draw $g \sim \pi_{t-1}$.
 - Present user with $(S, g|_S)$, observe feedback.
 - Update posterior: $\pi_t(g) \propto \pi_{t-1}(g) \exp\left(-\beta \cdot \mathbb{1}[g \text{ is inconsistent with feedback}]\right)$

Generic interactive learning scheme

Interactive structure learning protocol:

- Maintain a posterior π_t over structures
- For t = 1, 2, ...:
 - Select subset S and draw $g \sim \pi_{t-1}$.
 - Present user with $(S, g|_S)$, observe feedback.
 - Update posterior: $\pi_t(g) \propto \pi_{t-1}(g) \exp\left(-\beta \cdot \mathbb{1}[g \text{ is inconsistent with feedback}]\right)$

Generalization of query-by-committee (SQBC).

- If the user's feedback occasionally fixes mistakes, then SQBC is consistent.
- Under stronger assumptions, SQBC converges on g^* after $\tilde{O}\left(\log\frac{1}{\pi(g^*)}\right)$ rounds.

Other results

• Generalized update rule

$$\pi_t(g) = \pi_{t-1}(g) \cdot \exp\left(-\beta \cdot \ell(g(x_t), y_t)\right)$$

for efficiently samplable posteriors

- Efficiently kernelized querying rule
- Simulations

Other results

• Generalized update rule

$$\pi_t(g) = \pi_{t-1}(g) \cdot \exp\left(-\beta \cdot \ell(g(x_t), y_t)\right)$$

for efficiently samplable posteriors

• Efficiently kernelized querying rule

• Simulations

Poster: # 130