

Robust Subspace Estimation in a Stream

Roie Levin, Anish Sevekari, David Woodruff

Carnegie Mellon University

Least Squares Subspace Estimation

Input: A set of *n* data points $\{a_i\}_{i=1}^n$ in \mathbb{R}^d and a dimension *k*

Output: A *k*-dimensional subspace *S* such that:

$$\sum_i \operatorname{dist}(S, a_i)^2$$

is minimized, where $dist(S, x) := min_{y \in S} ||x - y||_2$

Robust Subspace Estimation

Input: A set of *n* data points $\{a_i\}_{i=1}^n$ in \mathbb{R}^d and a dimension *k*

Output: A *k*-dimensional subspace *S* such that:

$$\sum_{i} \operatorname{dist}(S, a_i)^2 \operatorname{dist}(S, a_i)$$

is minimized, where $dist(S, x) := min_{y \in S} ||x - y||_2$

Robust Subspace Estimation in a Stream

Input: A set of *n* data points $\{a_i\}_{i=1}^n$ in \mathbb{R}^d and a dimension *k*

Output: A *k*-dimensional subspace *S* such that:

$$\sum_{i} \operatorname{dist}(S, a_i)^2 \operatorname{dist}(S, a_i)$$

is minimized, where $dist(S, x) := min_{y \in S} ||x - y||_2$

We are given the data points in a stream:

 $a_1, a_2, a_3, \dots, a_n$

and we wish to solve the problem in poly(kd log(nd)) space.

Robust Subspace Estimation in a Stream

Input: A set of *n* data points $\{a_i\}_{i=1}^n$ in \mathbb{R}^d and a dimension *k*

Output: A *k*-dimensional subspace *S* such that:

$$\sum_{i} \operatorname{dist}(S, a_i)^2 \operatorname{dist}(S, a_i)$$

is minimized, where $dist(S, x) := \min_{y \in S} \|x - y\|_2$

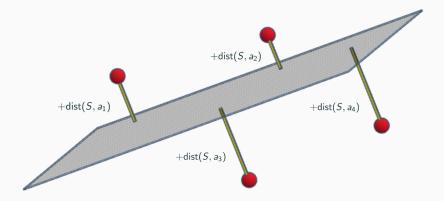
We are given the data points in a stream:

 $a_1, a_2, a_3, \dots, a_n$

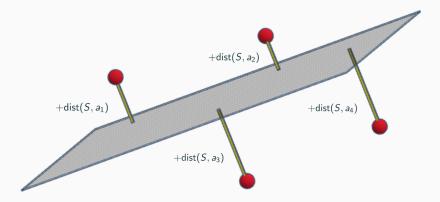
and we wish to solve the problem in $poly(kd \log(nd))$ space.

(Our algorithm even works in the **turnstile streaming model** with arbitrary, entry-wise +/- updates.)

Problem Statement



Problem Statement



We can write this objective as a low rank approximation problem:

$$\min_{X \text{ rank } k} \|A - AX\|_{2,1}$$

where $\|X\|_{2,1} := \sum_{i} \|X_{i,*}\|_{2}$

Hardness

[Clarkson and Woodruff '15] shows that the offline problem is NP-hard to approximate to within a $\left(1+\frac{1}{\operatorname{poly}(d)}\right)$ factor.

Hardness

[Clarkson and Woodruff '15] shows that the offline problem is NP-hard to approximate to within a $\left(1 + \frac{1}{\text{poly}(d)}\right)$ factor. \Rightarrow There cannot be a $(1 + \epsilon)$ -approximation algorithm running in time poly (k/ϵ) !

Hardness

[Clarkson and Woodruff '15] shows that the offline problem is NP-hard to approximate to within a $\left(1 + \frac{1}{\text{poly}(d)}\right)$ factor. \Rightarrow There cannot be a $(1 + \epsilon)$ -approximation algorithm running in time poly (k/ϵ) !

Algorithms

[Clarkson and Woodruff '15] also give a (1 + $\epsilon)\textsc{-approximation}$ algorithm that runs in time

$$O(\operatorname{nnz}(A)) + (n+d)\operatorname{poly}\left(\frac{k}{\epsilon}\right) + \exp\left(\operatorname{poly}\left(\frac{k}{\epsilon}\right)\right)$$

Theorem (Streaming Alg. for Robust Subspace Estimation) There is a randomized algorithm giving a $(1 + \epsilon)$ -approximate optimal solution to

$$\min_{X \text{ rank } k} \|A - AX\|_{2,1}$$

with the following guarantees:

Theorem (Streaming Alg. for Robust Subspace Estimation) There is a randomized algorithm giving a $(1 + \epsilon)$ -approximate optimal solution to

$$\min_{X \text{ rank } k} \|A - AX\|_{2,1}$$

with the following guarantees:

1. Runs in turnstile streaming model with space:

$$O\left(d\operatorname{poly}\left(\frac{k\log(nd)}{\epsilon}\right)\right)$$

Theorem (Streaming Alg. for Robust Subspace Estimation) There is a randomized algorithm giving a $(1 + \epsilon)$ -approximate optimal solution to

$$\min_{X \text{ rank } k} \|A - AX\|_{2,1}$$

with the following guarantees:

1. Runs in turnstile streaming model with space:

$$O\left(d\operatorname{poly}\left(\frac{k\log(nd)}{\epsilon}\right)\right)$$

2. Runs in time (offline):

$$O(nnz(A)) + (n+d)poly\left(\frac{k\log(nd)}{\epsilon}\right) + \exp\left(poly\left(\frac{k}{\epsilon}\right)\right)$$

Theorem (Streaming Alg. for Robust Subspace Estimation) There is a randomized algorithm giving a $(1 + \epsilon)$ -approximate optimal solution to

$$\min_{X \text{ rank } k} \|A - AX\|_{2,1}$$

with the following guarantees:

1. Runs in turnstile streaming model with space:

$$O\left(dpoly\left(\frac{k\log(nd)}{\epsilon}\right)\right)$$

2. Runs in time (offline):

$$O(nnz(A)) + (n+d)poly\left(\frac{k\log(nd)}{\epsilon}\right) + \exp\left(poly\left(\frac{k}{\epsilon}\right)\right)$$

(same as [Clarkson Woodruff '15] in leading order terms)

 $\min_{X \text{ rank } k} \|A - AX\|_{2,1}$

 $\min_{X \text{ rank } k} \|A - AX\|_{2,1}$???

$$\min_{X \text{ rank } k} \|A - AX\|_{2,1}$$

$$|$$

$$|$$

$$|$$

$$|$$

$$Y \leftarrow f_1(A)$$

$$|$$

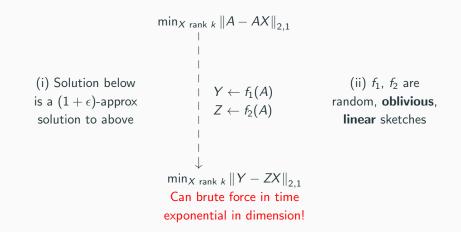
$$Z \leftarrow f_2(A)$$

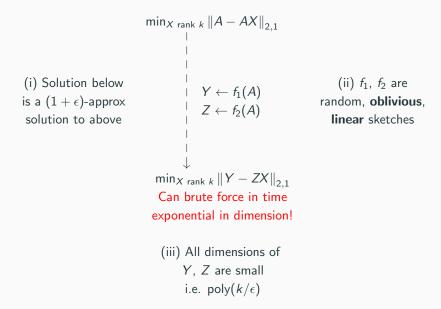
$$|$$

$$|$$

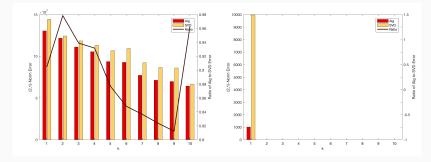
$$\min_{X \text{ rank } k} \|Y - ZX\|_{2,1}$$







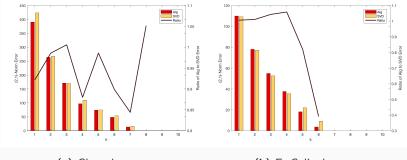
Experiments: Synthetic Data



(a) Random matrix + large outliers (b) Rank-2 matrix with large outliers

Comparison of Algorithm against SVD on synthetic data.

Experiments: Real-World Data



(a) Glass data set

(b) E. Coli. data set

Comparison of Algorithm against SVD on real-world data.

Thanks!