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Problem Statement

Least Squares Subspace Estimation

Input: A set of n data points {ai}ni=1 in Rd and a dimension k

Output: A k-dimensional subspace S such that:∑
i

dist(S , ai )
2

dist(S , ai )

is minimized, where dist(S , x) := miny∈S ‖x − y‖2

We are given the data points in a stream:

a1, a2, a3, ..., an

and we wish to solve the problem in poly(kd log(nd)) space.

(Our algorithm even works in the turnstile streaming model with

arbitrary, entry-wise +/− updates.)
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Problem Statement

We can write this objective as a low rank approximation problem:

min
X rank k

‖A− AX‖2,1

where ‖X‖2,1 :=
∑

i ‖Xi,∗‖2

2



Problem Statement

We can write this objective as a low rank approximation problem:

min
X rank k

‖A− AX‖2,1

where ‖X‖2,1 :=
∑

i ‖Xi,∗‖2
2



Previous Work

Hardness

[Clarkson and Woodruff ’15] shows that the offline problem is NP-hard to

approximate to within a
(

1 + 1
poly(d)

)
factor.

⇒ There cannot be a

(1 + ε)-approximation algorithm running in time poly(k/ε)!

Algorithms

[Clarkson and Woodruff ’15] also give a (1 + ε)-approximation algorithm

that runs in time

O(nnz(A)) + (n + d)poly

(
k

ε

)
+ exp

(
poly

(
k

ε

))
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Our Results

Theorem (Streaming Alg. for Robust Subspace Estimation)

There is a randomized algorithm giving a (1 + ε)-approximate

optimal solution to

min
X rank k

‖A− AX‖2,1

with the following guarantees:

1. Runs in turnstile streaming model with space:

O

(
dpoly

(
k log(nd)

ε

))

2. Runs in time (offline):

O(nnz(A)) + (n + d)poly

(
k log(nd)

ε

)
+ exp

(
poly

(
k

ε

))
(same as [Clarkson Woodruff ’15] in leading order terms)
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High Level Approach

minX rank k ‖A− AX‖2,1

???

(i) Solution below

is a (1 + ε)-approx

solution to above

←
−
−
−
−
−
−
−
−
−

Y ← f1(A)

Z ← f2(A)

(ii) f1, f2 are

random, oblivious,

linear sketches

minX rank k ‖Y − ZX‖2,1
Can brute force in time

exponential in dimension!

(iii) All dimensions of

Y , Z are small

i.e. poly(k/ε)
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Experiments: Synthetic Data

(a) Random matrix + large outliers (b) Rank-2 matrix with large outliers

Comparison of Algorithm against SVD on synthetic data.
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Experiments: Real-World Data

(a) Glass data set (b) E. Coli. data set

Comparison of Algorithm against SVD on real-world data.
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