Human-in-the-Loop Interpretability Prior

Isaac Lage¹, Andrew Slavin Ross¹, Been Kim², Samuel J. Gershman¹ & Finale Doshi-Velez¹

¹Harvard University & ²Google Brain

Poster: Today, 10:45 AM - 12:45 PM, Room 210 & 230 AB #119

Interpretability

Previous Work

Previous Work

Which proxy?

How to use results to choose a better proxy?

Interpretability Prior

Goal: Bias model to be human interpretable

$\max_{M \in \mathcal{M}} p(X|M)p(M)$

Bayesian Inference

Interpretability Prior

First: Formulate Interpretability Encouraging Prior

 $\max_{M \in \mathcal{M}} p(X|M)p(M)$

Human-in-the-Loop Interpretability

Interpretability Prior

First: Formulate Interpretability Encouraging Prior

Then: Identify MAP Solution

Interpretability Prior

$\max_{M \in \mathcal{M}} p(X|M) p(M)$

Likelihood: Easy

Evaluate computationally No users!

Challenge: Approximate MAP with few evaluations of prior

Step 1: Identify Diverse, High Likelihood Models

Step 1: Identify Diverse, High Likelihood Models

Step 1: Identify Diverse, High Likelihood Models

Main Takeaways

- We optimize for interpretability directly with human feedback
- Our approach efficiently identifies human-interpretable and predictive models
- MAP approximations correspond to different interpretability proxies on different datasets

Poster: Today, 10:45 AM - 12:45 PM, Room 210 & 230 AB #119