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Goal:	Bias	model	to	be	human	interpretable

Bayesian	Inference
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First: Formulate	Interpretability	Encouraging	Prior
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Then:	Identify	MAP	Solution

First: Formulate	Interpretability	Encouraging	Prior



Interpretability	Prior

Likelihood:	Easy
Evaluate	computationally			

No	users!



Interpretability	Prior

Likelihood:	Easy

Prior:	Hard
No	closed	form	
Evaluate	with	
user	studies!

Evaluate	computationally			
No	users!



Interpretability	Prior

Challenge:	Approximate	MAP	with few	evaluations	of	prior

Prior:	Hard
No	closed	form	
Evaluate	with	
user	studies!
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Step	1:	Identify	Diverse,	High	Likelihood	Models
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Step	2:	Bayesian	Optimization	with	User	Studies
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Census	Dataset

MORE
Interpretable Number	of	Iterations

•We	optimize	for	interpretability	
directly	with	human	feedback
•Our	approach	efficiently	identifies	
human-interpretable	and	
predictive	models
•MAP	approximations	correspond	
to	different	interpretability	
proxies	on	different	datasets


