Coresets for Logistic Regression

Chris Schwiegelshohn (joint work with Alexander Munteanu, Christian Sohler, and David Woodruff)

Sapienza University of Rome

Logistic Regression

Logistic Regression Given a point set $X \subset \mathbb{R}^d$, and a labeling function $y : X \to \{-1, 1\}$ find a vector β , such that

$$\sum_{p \in X} \ln(1 + \exp(-y(p) \cdot p^T \beta))$$

is minimized.

Logistic Regression

Logistic Regression Given a point set $X \subset \mathbb{R}^d$, and a labeling function $y : X \to \{-1, 1\}$ find a vector β , such that

$$\sum_{p \in X} \ln(1 + \exp(-y(p) \cdot p^T \beta))$$

is minimized.

Coreset

Find a set S of points, such that for any candidate vector β

Coreset

Find a set S of points, such that for any candidate vector β

Coreset

Find a set S of points, such that for any candidate vector β

Coreset

Find a set S of points, such that for any candidate vector β

Coreset

Find a set S of points, such that for any candidate vector β

Coreset

Find a set S of points, such that for any candidate vector β

Impossibility Result

4

Impossibility Result

4

Beyond Worst Case?

Define a notion of overlap μ between the two classes.

Show that the total sensitivity may be bounded in terms of μ .

If μ is large, a suitable sensitivity distribution yields a small coreset.

Works in Streaming, MapReduce, etc.

Algorithm

1. Compute $X := U \Sigma V^T$

2. Sample $O(\mu\sqrt{n}\left(\frac{d}{\varepsilon}\right)^2)$ points with replacement with probability proportionate to $\|U_i\|_2$

3. For i = 1 to $\log n$

4. Recursively repeat step 2

Algorithm

- 1. Compute $X := U \Sigma V^T$
- 2. Sample $O(\mu\sqrt{n}\left(\frac{d}{\varepsilon}\right)^2)$ points with replacement with probability proportionate to $\|U_i\|_2$
- 3. For i = 1 to $\log n$
- 4. Recursively repeat step 2

Algorithm computes a coreset of size $\tilde{O}(\mu^3 d^3 \varepsilon^{-4} \log^4 \mu n d)$.

It Even Works In Practice!

Conclusion and Open Problems

Summary of Results

- Impossibility result for coresets for logistic regression
- Beyond-Worst Case analysis for coreset construction

Open Questions

- Direct sampling scheme that avoids recursion?
- Is μ-complexity the correct measure?
- What other problems admit coresets in "reasonable" cases?