On the Local Minima of the Empirical Risk

Chi Jin*1, Lydia T. Liu*1, Rong Ge2, Michael I. Jordan1

¹EECS, University of California, Berkeley. ²Duke University.

Nonconvex Optimization.

• Gradient Descent (GD) \rightarrow stationary points: local max, saddle points, local min.

Chi Jin

Nonconvex Optimization.

• Gradient Descent (GD) \rightarrow stationary points: local max, saddle points, local min.

▶ Perturbed GD [Jin et al. 2017] efficiently escapes local max and saddle points.

Nonconvex Optimization.

- Gradient Descent (GD) \rightarrow stationary points: local max, saddle points, local min.
- ▶ Perturbed GD [Jin et al. 2017] efficiently escapes local max and saddle points.

Chi Jin

How to deal with spurious local min?

In general, finding global minima is NP-hard.

In general, finding global minima is NP-hard.

Avoiding "shallow" local minima

Goal: finds approximate local minima of smooth nonconvex function *F*, given only access to an errorneous version *f* where $\sup_{\mathbf{x}} |F(\mathbf{x}) - f(\mathbf{x})| \le \nu$

Statistical Learning.

Minimize population risk R while only have access to emprical risk \hat{R}_n .

Statistical Learning.

Minimize population risk R while only have access to emprical risk \hat{R}_n .

Unifrom convergence guarantees $\sup_{\theta} |R(\theta) - \hat{R}_n(\theta)| \le O(1/\sqrt{n})$.

Results

Goal: find ϵ -approximate local minima of F in polynomial time.

Central Questions:

- 1. What algorithm can achieve this?
- 2. How much error ν can be tolerated?

Goal: find ϵ -approximate local minima of F in polynomial time.

Central Questions:

1. What algorithm can achieve this?

2. How much error ν can be tolerated?

Zhang et al. [2017]: Stochastic Gradient Langevin Dynamics (SGLD) if $\nu \leq \epsilon^2/d^8$.

Chi Jin

Goal: find ϵ -approximate local minima of F in polynomial time.

Central Questions:

1. What algorithm can achieve this?

2. How much error ν can be tolerated?

Zhang et al. [2017]: Stochastic Gradient Langevin Dynamics (SGLD) if $\nu \leq \epsilon^2/d^8$.

This Work: Perturbed SGD on a "smoothed" version of f if $\nu \leq \epsilon^{1.5}/d$.

Chi Jin

Is there better polynomial time algorithms that tolerate larger error?

Is there better polynomial time algorithms that tolerate larger error? No!

Complete characterization of error ν vs accuracy ϵ and dimension d.

Is there better polynomial time algorithms that tolerate larger error? No!

Complete characterization of error ν vs accuracy ϵ and dimension d.

Chi Jin

Poster: Wed 5-7 PM, #43. Thanks!