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Entropy Rate Estimation for Markov Chains with Large State Space

Entropy Rate Estimation

Entropy rate of a stationary process {Xt}∞t=1:

H̄ , lim
n→∞

H(X n)

n
, H(X n) =

∑
xn∈X n

pX n(xn) log
1

pX n(xn)
.

I fundamental limit of the expected logarithmic loss when
predicting the next symbol given all past symbols

I fundamental limit of data compressing for stationary
stochastic processes

Our Task
Given a length-n trajectory {Xt}nt=1, estimate H̄.
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Entropy Rate Estimation for Markov Chains with Large State Space

From Entropy to Entropy Rate

Theorem (Jiao–Venkat–Han–Weissman’15, Wu–Yang’16)

For discrete entropy estimation with support size S , consistent
estimation is possible if and only if n� S

log S .

Sample Complexity

i.i.d. process constant process

n � S
log S n � ∞n � ?
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Entropy Rate Estimation for Markov Chains with Large State Space

Assumption

Assumption

The data-generating process {Xt}nt=1 is a reversible first-order
Markov chain with relaxation time τrel.

I Relaxation time τrel = (spectral gap)−1 ≥ 1 characterizes the
mixing time of the Markov chain

I High-dimensional setting: state space S = |X | is large and
may scale with n
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Entropy Rate Estimation for Markov Chains with Large State Space

Estimators

For first-order Markov chain:

H̄ = H(X1|X0) =
S∑

i=1

πi︸︷︷︸
stationary distribution

conditional entropy︷ ︸︸ ︷
H(X1|X0 = i)

I Estimate of πi : empirical frequency π̂i of state i

I Estimate of H(X1|X0 = i): estimate discrete entropy from
samples X(i) = {Xj : Xj−1 = i}

Estimators

I Empirical estimator: H̄emp =
∑S

i=1 π̂i Ĥemp(X(i))

I Proposed estimator: H̄opt =
∑S

i=1 π̂i Ĥopt(X(i))
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Main Results

Empirical estimator H̄emp

τrel1 Θ( S
log3 S

)

n � S2 n & S2

Proposed estimator H̄opt

τrel1 Θ( S
log3 S

)1 + Θ( log
2 S√
S

)

n � S2

log S n & S2

log Sn . S2

log S

n � S
log S

For a wide range of τrel, sample complexity does not depend on τrel.
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Application: Fundamental Limits of Language Models
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Figure 1: Estimates of conditional entropy based on linguistic corpora

9

Figure: Estimated and achieved fundamental limits of language modeling

I Penn Treebank (PTB): 1.50 vs. 5.96 bits per word
I Googles One Billion Words (1BW): 3.46 vs. 4.55 bits per word
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