Scalable Laplacian K-modes

Imtiaz Masud Ziko, Eric Granger and Ismail Ben Ayed

Simplex constraint

Discrete

Why Laplacian K-modes?

★ Handles non convex (manifold structured) clusters.

Why Laplacian K-modes?

- ★ Handles non convex (manifold structured) clusters.
- ★ Mean or Mode?

Why Laplacian K-modes?

Mode images

Mean images

- ★ Handles non convex (manifold structured) clusters.
- ★ Mean or Mode?

- Challenging Optimization problem: 6
 - simplex/integer constraint.
 - Solution Dependence of modes on \mathbf{z}_p
 - Laplacian over discrete variable!

Challenging Optimization problem:

Well-known Spectral relaxation [Shi & Malik '00]:

Challenging Optimization problem:

- Well-known Spectral relaxation [Shi & Malik '00]:
 - Eigen-decomposition of Laplacian $(N \times N)$.

Challenging Optimization problem:

- Well-known Spectral relaxation [Shi & Malik '00]:
 - Eigen-decomposition of Laplacian $(N \times N)$.
- Convex relaxation (relax integer constraint) [Wang and Carreira-Perpiñán '14]:
 - Solve over *N x L* variables altogether.
 - Projection to *L*-dimensional simplex.

Not applicable in large scale clustering 🖷

Challenging Optimization problem:

We Tackle

Well-known Spectral relaxation [Shi & Malik '00]:

- Convex relaxation (relax integer constraint) [Wang and Carreira-Perpiñán '14] :
 - Solve over *N x L* variables altogether.
 - Projection to *L*-dimensional simplex.

Challenging Optimization problem:

- Well-known Spectral relaxation [Shi & Malik '00]:
 - Eigen-decomposition of Laplacian $(N \times N)$.
- Convex relaxation (relax integer constraint) [Wang and Carreira-Perpiñán '14] :

- Solve over $N \times L$ variables altogether. \rightarrow Parallel structure
 - Projection to *L*-dimensional simplex.

Challenging Optimization problem:

- Well-known Spectral relaxation [Shi & Malik '00]:
 - Eigen-decomposition of Laplacian $(N \times N)$.
- Convex relaxation (relax integer constraint) [Wang and Carreira-Perpiñán '14] :

- \square Solve over $N \times L$ variables altogether.
- 🎼 Projection to L-dimensional simplex. --- avoid

$$\sum_{p} d_{p} - \sum_{p,q} k(\mathbf{x}_{p}, \mathbf{x}_{q}) \mathbf{z}_{p}^{t} \mathbf{z}_{q}$$

7

 \bowtie Avoids extra dual variables for constraints: $\mathbf{z}_p \ge 0$

$$arphi$$
 Closed- form update duel : $\mathbf{1}^t \mathbf{z}_p = 1$

Iterative bound:

$$\mathcal{A}_i(\mathbf{Z}) = \sum_{p=1}^N \mathbf{z}_p^t (\log(\mathbf{z}_p) - \mathbf{a}_p^i - \lambda \mathbf{b}_p^i)$$

Where,

$$\mathbf{a}_{p}^{i} = [a_{p,1}^{i}, \dots, a_{p,L}^{i}]^{t}, \ a_{p,l}^{i} = k(\mathbf{x}_{p}, \mathbf{m}_{l}^{i})$$
$$\mathbf{b}_{p}^{i} = [b_{p,1}^{i}, \dots, b_{p,L}^{i}]^{t}, \ b_{p,l}^{i} = \sum_{q} k(\mathbf{x}_{p}, \mathbf{x}_{q}) z_{q,l}^{i}$$

Iterative bound: $\mathcal{A}_i(\mathbf{Z}) = \sum_{p=1}^N \mathbf{z}_p^t (\log(\mathbf{z}_p) - \mathbf{a}_p^i - \lambda \mathbf{b}_p^i)$ Sum of independent function

Where,

$$\mathbf{a}_{p}^{i} = [a_{p,1}^{i}, \dots, a_{p,L}^{i}]^{t}, \ a_{p,l}^{i} = k(\mathbf{x}_{p}, \mathbf{m}_{l}^{i})$$
$$\mathbf{b}_{p}^{i} = [b_{p,1}^{i}, \dots, b_{p,L}^{i}]^{t}, \ b_{p,l}^{i} = \sum_{q} k(\mathbf{x}_{p}, \mathbf{x}_{q}) z_{q,l}^{i}$$

Independent Iterative bound:

$$\min_{\mathbf{z}_p \in \nabla_L} \mathbf{z}_p^t (\log(\mathbf{z}_p) - \mathbf{a}_p^i - \lambda \mathbf{b}_p^i), \,\forall p$$

Independent Iterative bound:

$$\min_{\mathbf{z}_p \in \nabla_L} \mathbf{z}_p^t (\log(\mathbf{z}_p) - \mathbf{a}_p^i - \lambda \mathbf{b}_p^i), \,\forall p$$

KKT conditions get closed form solution:
$$\mathbf{z}_p^{i+1} = \frac{\exp(\mathbf{a}_p^i + \lambda \mathbf{b}_p^i)}{\mathbf{1}^t \exp(\mathbf{a}_p^i + \lambda \mathbf{b}_p^i)}$$

SLK-BO

Modes as byproducts of the formulated z-updates:

SLK-BO

Modes as byproducts of the formulated z-updates:

SLK-BO

Modes as byproducts of the formulated z-updates:

 $\mathbf{z}_{p}^{i+1} = \frac{\exp(\mathbf{a}_{p}^{i} + \lambda \mathbf{b}_{p}^{i})}{\mathbf{1}^{t} \exp(\mathbf{a}_{p}^{i} + \lambda \mathbf{b}_{p}^{i})}$ take the form of soft approximation of hard max as: $\mathbf{m}_{l}^{i+1} = \mathbf{x}_{p}, \text{ with } p = \arg\max_{q}[z_{q,l}]^{i}$ Linear in N

Unlike Mean-shift :

- ☑ No gradient ascent iterates
- ☑ Independent of feature dimensions
- Arbitrary kernels

SLK Result

NMI/Accuracy

Algorithm	MNIST	MNIST (code)	MNIST (GAN)	LabelMe (Alexnet)	LabelMe (GIST)	YTF	Shuttle	Reuters
K-means	0.53/0.55	0.66/0.74	0.68/0.75	0.81/0.90	0.57/0.69	0.77/0.58	0.22/0.41	0.48/0.73
K-modes	0.56/0.60	0.67/0.75	0.69/0.80	0.81/0.91	0.58/0.68	0.79/0.62	0.33/0.47	0.48/0.72
NCUT	0.74/0.61	0.84/0.81	0.77/0.67	0.81/ 0.91	0.58/0.61	0.74/0.54	0.47/0.46	_
KK-means	0.53/0.55	0.67/0.80	0.69/0.68	0.81/0.90	0.57/0.63	0.71/0.50	0.26/0.40	-
LK	-	-	-	0.81/ 0.91	0.59/0.61	0.77/0.59	-	-
Spectralnet*	-	0.81/0.80	-	-	-	-	-	0.46/0.65
SLK-MS	0.80 /0.79	0.88/0.95	0.86/0.94	0.83/0.91	0.61/0.72	0.82/0.65	0.45/0.70	0.43/0.74
SLK-BO	0.77/0.80	0.89/0.95	0.86/0.94	0.83/0.91	${f 0.61/0.72}$	0.80/0.64	0.51/0.71	0.43/0.74
K-means	$119.9 \mathrm{s}$	16.8s	51.6s	11.2s	132.1s	210.1s	1.8s	36.1s
K-modes	90.2s	20.2s	20.3s	7.4s	12.4s	61.0s	0.5s	51.6s
NCUT	26.4s	28.2s	9.3 s	7.4s	10.4s	19.0s	27.4s	-
KK-means	2580.8s	$1967.9 \mathrm{s}$	2427.9s	4.6s	17.2s	40.2s	1177.6s	-
LK	-	-	-	33.4s	180.9s	409.0s	-	-
Spectralnet*	-	3600.0s	-	-	-	-	-	9000.0s
SLK-MS	101.2s	82.4s	37.3s	4.7s	37.0s	83.3s	3.8s	12.5s
SLK-BO	14.2s	23.1s	10.3s	1.8s	$7.1\mathrm{s}$	12.4s	$1.3\mathrm{s}$	$53.1\mathrm{s}$

Time (seconds)

SLK Result

NMI/Accuracy

Algorithm	MNIST	MNIST (code)	MNIST (GAN)	LabelMe (Alexnet)	LabelMe (GIST)	YTF	Shuttle	Reuters
K-means	0.53/0.55	0.66/0.74	0.68/0.75	0.81/0.90	0.57/0.69	0.77/0.58	0.22/0.41	0.48/0.73
K-modes	0.56/0.60	0.67/0.75	0.69/0.80	0.81/0.91	0.58/0.68	0.79/0.62	0.33/0.47	0.48/0.72
NCUT	0.74/0.61	0.84/0.81	0.77/0.67	0.81/ 0.91	0.58/0.61	0.74/0.54	0.47/0.46	-
KK-means	0.53/0.55	0.67/0.80	0.69/0.68	0.81/0.90	0.57/0.63	0.71/0.50	0.26/0.40	-
LK	-	-	-	0.81/ 0.91	0.59/0.61	0.77/0.59	-	-
Spectralnet*	_	0.81/0.80	-	-	-	-	-	0.46/0.65
SLK-MS	0.80 /0.79	0.88/0.95	0.86/0.94	0.83/0.91	0.61/0.72	0.82/0.65	0.45/0.70	0.43/0.74
SLK-BO	0.77/0.80	0.89/0.95	0.86/0.94	0.83/0.91	0.61/0.72	0.80/0.64	0.51/0.71	0.43/0.74
K-means	119.9s	16.8 s	51.6s	11.2s	132.1s	210.1s	1.8s	$36.1\mathrm{s}$
K-modes	90.2s	20.2s	20.3s	7.4s	12.4s	61.0s	$0.5\mathrm{s}$	51.6s
NCUT	26.4s	28.2s	9.3s	$7.4\mathrm{s}$	10.4s	19.0s	27.4s	-
KK-means	2580.8s	1967.9s	2427.9s	4.6s	17.2s	40.2s	1177.6s	-
LK	-		-	33.4s	180.9s	409.0s	-	-
Spectralnet*	-	3600.0s	-	-	-	-	-	9000.0s
SLK-MS	101.2s	82.4s	37.3s	4.7s	37.0s	83.3s	$3.8\mathrm{s}$	$12.5\mathrm{s}$
SLK-BO	14.2s	23.1s	10.3s	1.8s	7.1 s	12.4s	1.3s	53.1s

Time (seconds)

SLK Result

Comparison of optimization quality w.r.t LK [Wang and Carreira-Perpiñán 2014]

Thank you

Code on: https://github.com/imtiazziko/SLK

More at poster session: Room 210 & 230 AB #96