

Reducing Network Agnostophobia

Akshay Raj Dhamija Dr. Manuel Günther Dr. Terrance E. Boult

NeurIPS 2018

Reducing Network Agnostophobia

"The Fear of Unknow"

Akshay Raj Dhamija Dr. Manuel Günther Dr. Terrance E. Boult

NeurIPS 2018

Classification with Deep Neural Networks

Response to Out of Distribution Samples - CIFAR Samples

Response to Out of Distribution Samples - CIFAR Samples

Response to Out of Distribution Samples - NIST Letters

Akshay Raj Dhamija | Dr. Manuel Günther | Dr. Terrance E. Boult

Wed Poster Session B | #10

Handwritten Character Recognition Using Neural Network Architectures^{*}

O. Matan, R. K. Kiang, C. E. Stenard, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel, and Y. Le Cun AT&T Bell Laboratories, Holmdel, N. J. 07733

Abstract

We have developed a neural-network architecture for recognizing handwritten digits. This network has 1% error rate with about 7% reject rate or written zipcode digits provided by the U.S. Postal ice. In time time tring the tring the tring the tring the tring the tring tring the tring tring the tring tring

One of the earliest approaches for "none of the above" or "none of known classes" - 1990

are other interesting theoretical qualities of Softmax, such as its connection to the entropy of the system (Bridle, 1989). The form of Softmax is the following:

$$S_1 = \frac{e^{\beta O_1}}{\sum_k e^{\beta O_k}}$$

Where O_i is the activation level of output unit i, and S_i is the Softmax score for class i. We have slightly modified this function by adding an additional term to the denominator:

$$S_{i} = \frac{e^{\beta O_{i}}}{e^{\alpha} + \sum_{k} e^{\beta O_{k}}}$$

The term involving α essentially represents the activation level of an artificial N+1st category, the "none of the above" category. It will cause reduction of the score when the highest active unit has a low absolute value.

Softmax considers competition between the most-active unit and all the

Akshay Raj Dhamija | Dr. Manuel Günther | Dr. Terrance E. Boult

Handwritten Character Recognition Using Neural Network Architectures^{*}

O. Matan, R. K. Kiang, C. E. Stenard, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel, and Y. Le Cun AT&T Bell Laboratories, Holmdel, N. J. 07733

Abstract

We have developed a neural-network architecture for recognizing handwritten digits. This network has 1% error rate with about 7% reject rate or ritten zipcode digits provided by the U.S. Postal ice. In time time time trained by the U.S. Postal

One of the earliest approaches for "none of the above" or "none of known classes" - 1990

are other interesting theoretical qualities of Softmax, such as its connection to the entropy of the system (Bridle, 1989). The form of Softmax is the following:

$$S_{i} = \frac{e^{\beta O_{i}}}{\sum_{k} e^{\beta O_{k}}} \qquad \text{Sta}$$

Standard Softmax

Where O_i is the activation level of output unit *i*, and S_i is the Softmax score for class *i*. We have slightly modified this function by adding an additional term to the denominator:

$$S_{1} = \frac{e^{\beta O_{1}}}{\sum_{k} e^{\beta O_{k}}}$$
 Modified Softmax

The term involving α essentially represents the activation level of an artificial N+1st category, the "none of the above" category. It will cause reduction of the score when the highest active unit has a low absolute value.

Softmax considers competition between the most-active unit and all the

Akshay Raj Dhamija | Dr. Manuel Günther | Dr. Terrance E. Boult

Side View

Top View

Background Class Approach

Background Class Approach

Background Class Approach

Observation from Default Response - Leading to Our Approach

Observation from Default Response - Leading to Our Approach

Magnitude of Deep Feature Representations of

Known Samples > Unknown Samples

Magnitude of Feature Vector		Entropy	
Knowns	Unknowns	Knowns	Unknowns
94.90 ± 27.47	32.27 ± 18.47	0.015 ± .084	0.318 ± .312

Observation from Default Response - Leading to Our Approach

Magnitude of Deep Feature Representations of

Known Samples > Unknown Samples

Magnitude of Feature Vector		Entropy	
Knowns	Unknowns	Knowns	Unknowns
94.90 ± 27.47	32.27 ± 18.47	0.015 ± .084	0.318 ± .312

Entropy of

Known Samples < Unknown Samples

Our Approach

Unknowns

Unknown feature vectors pushed to center

Our Approach

Entropic Open-Set Loss $\mathcal{J}_E(x) = \begin{cases} -\log S_c(x) & \text{if } x \in D'_c \\ -\frac{1}{c} \sum_{c=1}^{c} \log S_c(x) & \text{if } x \in D'_b \end{cases}$

Increase Entropy Margin

Increases entropy of the softmax scores for unknwons

Our Approach

Entropic Open-Set Loss $\mathcal{J}_E(x) = \begin{cases} -\log S_c(x) & \text{if } x \in D'_c \\ -\frac{1}{c} \sum_{c=1}^C \log S_c(x) & \text{if } x \in D'_b \end{cases}$

Increases entropy of the softmax scores for unknwons

Increase Entropy Margin

Objectosphere Loss

Increase Deep Feature Magnitude Margin

$$\mathcal{J}_{R}(x) = \mathcal{J}_{E} + \begin{cases} \max(\xi - \|F(x)\|, 0)^{2} - \log S_{c}(x) & \text{if } x \in D_{c}' \\ \|F(x)\|^{2} & \text{if } x \in D_{b}' \end{cases}$$

Minimizing the Euclidean length of deep representations for unknonwns

Novel Evaluation Metric : Open Set Recognition Curve

Thank You!

What's at the Poster B#100?

- Why this works!
- Drawbacks of current evaluation techniques
- Discussion of Openset deep networks
- Performance on wider networks like ResNet-18
- Implementing Entropic Open-Set loss in 1-line of code 😳

Thoughts and comments are welcome at adhamija@vast.uccs.edu