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Sampling from a smaller space => variance reduction
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WikiTableQuestions: first SOTA using RL 
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WikiSQL: strong vs. weak supervision!
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● MAPO converges slower than iterative maximum likelihood, 
but reaches a better solution. 

● REINFORCE doesn’t make much progress (<10% accuracy).
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https://github.com/crazydonkey200/neural-symbolic-machines

https://arxiv.org/abs/1807.02322

http://crazydonkey200.github.io/

An efficient policy 
optimization method for 
learning to generate 
sequences from sparse 
rewards.  
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