Convex elicitation of continuous properties

Jessica Finocchiaro, Rafael Frongillo

University of Colorado- Boulder

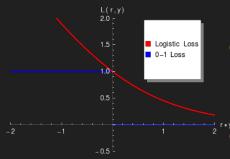
Empirical Risk Minimization (ERM)

• In ML, use *Empirical Risk* to form hypothesis $h^* : x \mapsto y$

$$h^* = \arg\min_{h \in \mathcal{H}} \sum_{(x,y) \in \text{data}} L(h(x),y)$$

- Algorithm minimizes empirical risk.
- h* depends on the design of L.
 - Minimum requirement: consistent loss.

ERM → Property Elicitation



- A property Γ : Δ(𝒱) → 𝔅 maps probability distributions to predictions
- A loss L : $\mathcal{R} \times \mathcal{Y} \to \mathbb{R}$ elicits a property Γ if for all $p \in \Delta(\mathcal{Y})$,

 $\Gamma(p) = \arg\min_{r \in \mathcal{R}} \mathbb{E}_{Y \sim p} L(r, Y)$

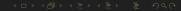
When are these loss functions convex?

もちゃん 聞い ふぼやんぼやん 臣々

Main result

Theorem (Informal)

Let Γ be a real-valued, continuous property defined over a finite outcome space.* Then Γ is elicitable $\iff \Gamma$ is convex elicitable. *more assumptions not listed



Main result

Theorem (Informal)

Let Γ be a real-valued, continuous property defined over a finite outcome space.* Then Γ is elicitable $\iff \Gamma$ is convex elicitable. *more assumptions not listed

Implications in prediction markets literature

Thank you

Come visit our poster with questions or thoughts! Right now: 10:45-12:45 Room 210 and 230 AB #73

