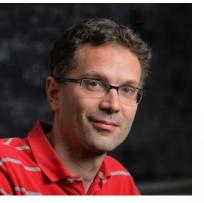
Generalization bounds for uniformly stable algorithms

Vitaly Feldman Google Brain

with Jan Vondrak



Generalization bounds

Dataset $S = (z_1, \dots, z_n) \sim P^n$

Data distribution P Loss function $\ell(w, z)$ Generalization error/gap for w = A(S): $\Delta_S(\ell(w)) = \mathbf{E}_{z \sim P}[\ell(w, z)] - \frac{1}{n} \sum_{i=1}^n \ell(w, z_i)$

Learning algorithm A

Uniform stability [Bousquet,Elisseeff '02]

A has uniform stability γ w.r.t. loss ℓ if for all S, S' that differ in a single element and $z \in Z$ $|\ell(A(S), z) - \ell(A(S'), z)| \leq \gamma$

A has uniform stability
$$\gamma$$
 w.r.t. loss ℓ if
for all S,S' that differ in a single element and $z \in Z$
 $|\ell(A(S), z) - \ell(A(S'), z)| \leq \gamma$

Examples:

- Strongly convex ERM [BE '02; Shalev-Shwartz, Shamir, Srebro, Sridharan '09]
- Gradient descent on convex smooth losses [Hardt, Recht, Singer '16]

Typical $\gamma = 1/\sqrt{n}$

From stability to generalization

For ℓ with range [0,1] and A with uniform stability $\gamma \in \left[\frac{1}{n}, 1\right]$ [Rogers,Wagner '78]

$$\mathbf{E}_{S\sim P^n}[\Delta_S(\ell(A))] \leq \gamma$$

From stability to generalization

For ℓ with range [0,1] and A with uniform stability $\gamma \in \left[\frac{1}{n}, 1\right]$ [Rogers,Wagner '78]

$$\mathbf{E}_{S \sim P^n}[\Delta_S(\ell(A))] \leq \gamma$$

[Bousquet,Elisseeff '02]

$$\Pr_{S \sim P^n} \left[\Delta_S(\ell(A)) \ge \gamma \sqrt{n} \log(1/\delta) \right] \le \delta$$

From stability to generalization

For ℓ with range [0,1] and A with uniform stability $\gamma \in \left[\frac{1}{n}, 1\right]$ [Rogers,Wagner '78]

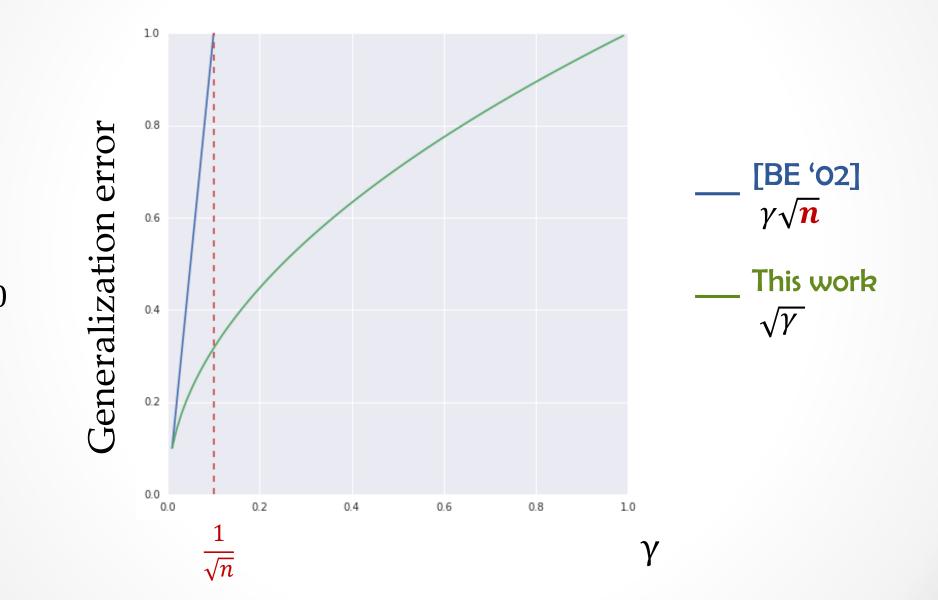
$$\mathbf{E}_{S \sim P^n}[\Delta_S(\ell(A))] \leq \gamma$$

[Bousquet,Elisseeff '02]

$$\Pr_{S \sim P^n} \left[\Delta_S(\ell(A)) \ge \gamma \sqrt{n} \log(1/\delta) \right] \le \delta$$

NEW
$$\Pr_{S \sim P^n} \left[\Delta_S(\ell(A)) \ge \sqrt{\gamma \log(1/\delta)} \right] \le \delta$$

Comparison



n = 100

Second moment

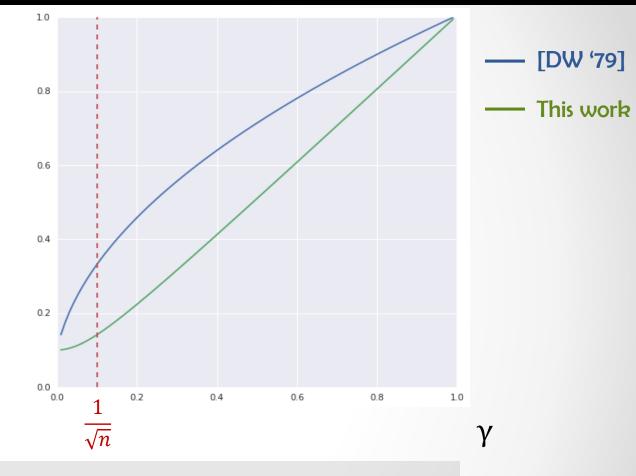
[Devroye,Wagner '79; BE '02]

$$\sqrt{\mathop{\mathbf{E}}_{S\sim P^n} \left[\Delta_S \left(\ell(A) \right)^2 \right]} \leq \sqrt{\gamma}$$

Second moment

[Devroye,Wagner '79; BE '02]

$$\sqrt{\mathop{\mathbf{E}}_{S\sim P^n} \left[\Delta_S \left(\ell(A) \right)^2 \right]} \leq \sqrt{\gamma}$$



TIGHT!

$$\frac{\mathbf{E}}{\sum_{S \sim P^n} \left[\Delta_S \left(\ell(A) \right)^2 \right]} \le \gamma + \frac{1}{\sqrt{n}}$$

There is more

- New proof technique
- Applications to stochastic convex optimization
- Connections to learning with differential privacy

