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Context & Goal

Similarity learning
Learn a similarity function tailored to an observed data sample

Goal
Analyze similarity learning in domain adaptation context

Labeled source sample S ∼ S Unlabeled target sample T ∼ T
same deterministic labeling function
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What we know already (Balcan et al. 2008)

Definition

K is (ε, γ, τ)-good similarity for S if

I (1 − ε) fraction of instances are on average more similar to landmarks with the same

label by a margin γ at least

I fraction of landmark instances ≥ τ

Theorem

If K is (ε, γ, τ)-good for S then one can draw {x1, ..., xL} from S and build a

mapping φ : x 7→ (K (x , x1), ...,K (x , xL)) that makes it linearly separable with a

large margin

XXX Generalization of the kernel trick!

XXX Several algorithms that minimize ε!
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Our contribution

Idea

Introduce (ε, γ)-goodness for (S,R) with data ∼ S and landmarks ∼ R (potentially R 6= S)

Theorem

If K is (ε, γ)-good for (S,R) and µ dominates S and T then K is

(ε + ε′, γ)-good for (T ,R) with

ε′ = L1 distance
between S and T ×

Worst margin achieved
by K on x∼µ , if T 6� S

and

ε′ = χ2 distance
between S and T ×

Worst margin achieved
by K on x∼S × ε on

source S, if T � S

XXX Multiplicative dependence of the target error on the source one!
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Empirical evaluations

Generated data for (left) 30◦, (middle) 60◦, (right) 90◦ degrees rotation



Empirical evaluations

Results for (left) T 6� S, (middle) T � S and (right) divergence evolution



For more details come visit our

poster #152 !
(spoiler: post-doc position available)


