Revisiting (ϵ, γ, τ) -similarity learning for domain adaptation

Sofien Dhouib¹ **levgen Redko**²

¹CREATIS laboratory, INSA Lyon, University of Lyon

²Hubert Curien laboratory, University Jean Monnet of Saint-Etienne

Similarity learning

Learn a similarity function tailored to an observed data sample

Similarity learning

Learn a similarity function tailored to an observed data sample

Goal

Analyze similarity learning in domain adaptation context

 $\label{eq:source} \mbox{Labeled source sample $S \sim S$} \qquad \mbox{Unlabeled target sample $T \sim T$} \\ \mbox{same deterministic labeling function}$

What we know already (Balcan et al. 2008)

Definition

- $\pmb{\mathsf{K}} \text{ is } \left(\epsilon, \gamma, \tau \right) \text{-good } \text{ similarity for } \mathcal{S} \text{ if }$
 - (1 − ε) fraction of instances are on average more similar to landmarks with the same label by a margin γ at least
 - ▶ fraction of landmark instances $\geq \tau$

What we know already (Balcan et al. 2008)

Definition

- $\pmb{\mathsf{K}} \text{ is } (\epsilon,\gamma,\tau)\text{-good similarity for } \mathcal{S} \text{ if }$
 - (1 − ε) fraction of instances are on average more similar to landmarks with the same label by a margin γ at least
 - ▶ fraction of landmark instances $\geq \tau$

Theorem

If K is (ϵ, γ, τ) -good for S then one can draw $\{x_1, ..., x_L\}$ from S and build a mapping $\phi : x \mapsto (K(x, x_1), ..., K(x, x_L))$ that makes it linearly separable with a large margin

✓ Generalization of the kernel trick!

 \checkmark Several algorithms that minimize $\epsilon!$

Idea

Introduce (ϵ, γ) -goodness for (S, \mathcal{R}) with data $\sim S$ and landmarks $\sim \mathcal{R}$ (potentially $\mathcal{R} \neq S$)

Idea

Introduce (ϵ, γ) -goodness for (S, \mathcal{R}) with data $\sim S$ and landmarks $\sim \mathcal{R}$ (potentially $\mathcal{R} \neq S$)

Theorem

If K is (ϵ, γ) -good for (S, \mathcal{R}) and μ **dominates** S and \mathcal{T} then K is $(\underline{\epsilon + \epsilon'}, \gamma)$ -good for $(\mathcal{T}, \mathcal{R})$ with

✓ Multiplicative dependence of the target error on the source one!

Generated data for (left) 30°, (middle) 60°, (right) 90° degrees rotation

Results for (left) $T \ll S$, (middle) $T \ll S$ and (right) divergence evolution

For more details come visit our poster #152 ! (spoiler: post-doc position available)