

Neural Information Processing Systems (NeurIPS) 2018

Recurrent Transformer Networks for Semantic Correspondence

Seungryong Kim¹, Stepthen Lin², Sangryul Jeon¹, Dongbo Min³, Kwanghoon Sohn¹

Dec. 05, 2018

2) Microsoft^{*} **Research**

Introduction

Semantic Correspondence

- Establishing <u>dense correspondences</u> between <u>semantically similar images</u>, i.e., different instances within the same object or scene categories
- For example, the wheels of two different cars, the body of people or animals

Introduction

Challenges in Semantic Correspondence

Photometric Deformations

• Intra-class appearance and attribute variations

• Etc.

 $\textcircled{()}{()}$

- Geometric Deformations
- Different viewpoint or baseline
- Non-rigid shape deformations

• Etc.

Lack of Supervision

- Labor-intensive of annotation
- Degraded by subjectivity
- *Etc.*

Problem Formulation

Objective

How to estimate **locally-varying affine transformation fields** without ground-truth supervision?

Background

Methods for Geometric Invariance in Feature Extraction Step

- UCN [Choy et al., NeurIPS'16]
- CAT-FCSS [Kim et al., TPAMI'18]
- Etc.

- Spatial Transformer Networks (STNs)-based methods
 [Jaderberg et al., NeurIPS'15]
- ✓ A_i is learned wo/ A_i^*
- **×** But, \mathbf{f}_i is learned w/ \mathbf{f}_i^*
- Geometric inference based on only source or target image

Background

Methods for Geometric Invariance in Regularization Step

- **GMat.** [Rocco *et al.*, CVPR'17]
- GMat. w/Inl. [Rocco et al., CVPR'18]
- Etc.

- T_i is learned wo/T_i*
 using self- or meta-supervision
- ✓ Geometric Inference using source/target images
- ✓ Globally-varying geometricInference only
- Only fixed, untransformed
 versions of the features

Networks Configuration

 $\textcircled{\textcircled{}}{\textcircled{}}{\textcircled{}}$

 To weaves the advantages of STN-based methods and geometric matching methods by recursively estimating geometric transformation residuals using geometry-aligned feature activations

Feature Extraction Networks

- Input images I^s and I^t are passed through Siamese convolution networks with parameters \mathbf{W}_F such that $D_i = F(I|\mathbf{W}_F)$
- Using CAT-FCSS, VGGNet (conv4-4), ResNet (conv4-23)

Recurrent Geometric Matching Networks

Constraint correlation volume construction

 $C(D_i^s, D^t(\mathbf{T}_j)) = \langle D_i^s, D^t(\mathbf{T}_j) \rangle / \sqrt{\langle D_i^s, D^t(\mathbf{T}_j) \rangle^2}$

Source

Target

Recurrent Geometric Matching Networks

• Recurrent geometric inference

3

 $\mathbf{T}_{i}^{k} - \mathbf{T}_{i}^{k-1} = F(C(D_{i}^{s}, D^{t}(\mathbf{T}_{i}^{k-1}))|\mathbf{W}_{G})$

Weakly-supervised Learning

- Intuition: matching score between the source D^s at each pixel *i* and the target $D^t(\mathbf{T}_i)$ should be maximized while keeping the scores of other candidates low
- Loss Function:

$$L(D_i^s, D^t(\mathbf{T})) = -\sum_{j \in M_i} p_j^* \log(p(D_i^s, D^t(\mathbf{T}_j)))$$

where the function $p(D_i^s, D^t(\mathbf{T}_j))$ is a Softmax probability $p(D_i^s, D^t(\mathbf{T}_j)) = \frac{\exp(C(D_i^s, D^t(\mathbf{T}_j)))}{\sum_{l \in M_i} \exp(C(D_i^s, D^t(\mathbf{T}_l)))}$

where p_j^* denotes a class label defined as 1 if j = i, 0 otherwise

Experimental Results

Results on the TSS Benchmark

TargetSCNetGMat. w/Inl.images[Han et al., ICCV'17][Rocco et al., CVPR'18]

Source

images

RTNs

Experimental Results

Results on the PF-PASCAL Benchmark

Source images

Target images SCNet GMat. w/Inl. [Han *et al.*, ICCV'17] [Rocco *et al.*, CVPR'18] RTNs

Experimental Results

Results on the PF-PASCAL Benchmark

SourceTargetSCNetGMat. w/Inl.imagesimages[Han et al., ICCV'17][Rocco et al., CVPR'18]

٢

RTNs

Concluding Remarks

- RTNs learn to infer **locally-varying geometric fields** for semantic correspondence in an end-to-end and weakly-supervised fashion
- The key idea is to utilize and iteratively refine **the transformations and convolutional activations through matching** between the image pair
- A technique is presented for weakly-supervised training of RTNs

Thank you! See you at 210 & 230 AB #119

Seungryong Kim, Ph.D.

Digital Image Media Lab. Yonsei University, Seoul, Korea Tel: +82-2-2123-2879 E-mail: srkim89@yonsei.ac.kr Homepage: http://diml.yonsei.ac.kr/~srkim/