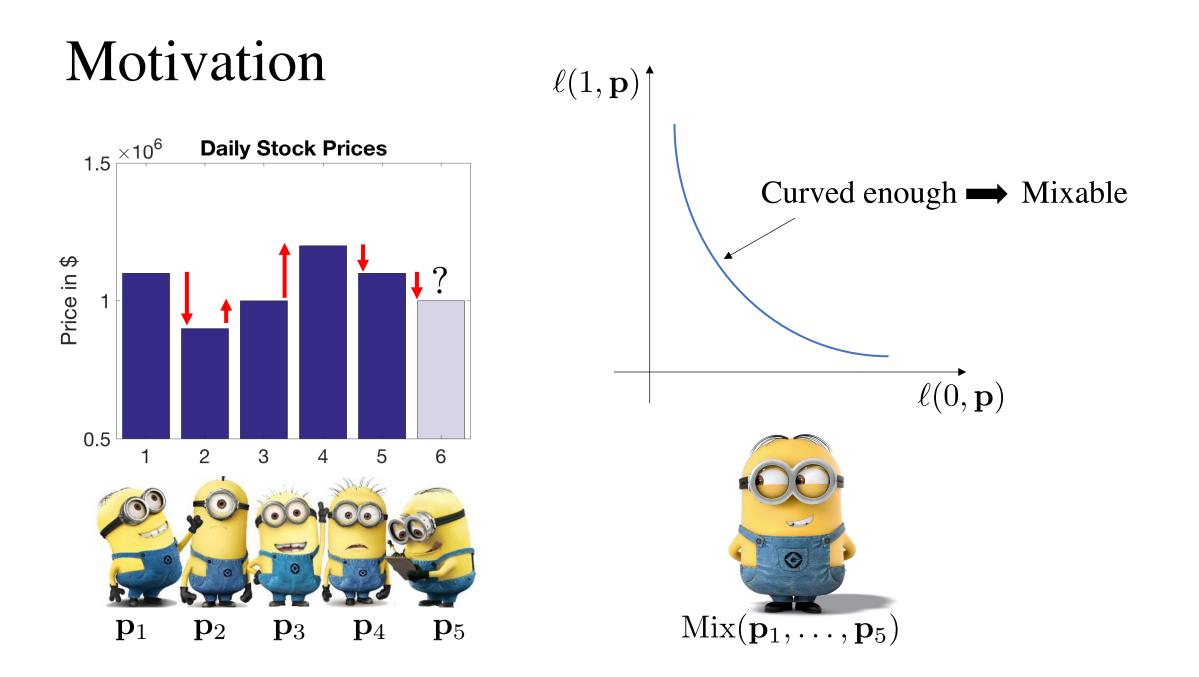
Constant Regret, Generalized Mixability, and Mirror Descent

Zakaria Mhammedi

Å

Robert C. Williamson



Prediction with Expert Advice (PwEA)

At each round $t \in \{1, ..., T\}$ the learner;

- 1. Observes experts' predictions $p_1^t, \ldots, p_k^t \in \mathcal{P}$;
- 2. Chooses prediction $p_*^t \in \mathcal{P}$;
- 3. Observes outcome $x^t \in \Omega$;
- \succ Learner suffers $\ell(x^t, \boldsymbol{p}^t_*)$
- \succ Expert k suffers $\ell(x^t, p_k^t)$

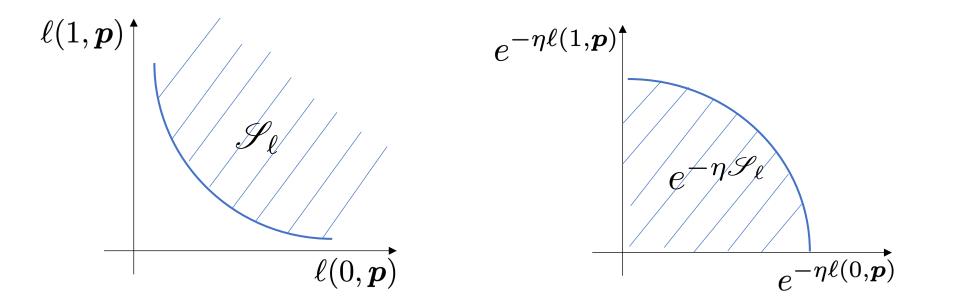
$$\sum_{k=1}^{T} \ell(x^{t}, \boldsymbol{p}_{*}^{t}) - \sum_{k=1}^{T} \ell(x^{t}, \boldsymbol{p}_{k}^{t}) \leq \boldsymbol{R}$$

R independent of $T \implies$ a constant regret

Mixability and the Aggregating Algorithm

• Mixable loss + the Aggregating Algorithm (AA) \implies a constant regret (Vovk et al. 1998)

Definition: Mixability is a geometric property of the loss function: ℓ is η -mixable $\iff e^{-\eta \mathscr{S}_{\ell}}$ is convex (Vovk et al. 2009)



Generalized Mixability + the Generalized AA

• A loss is (η, Φ) -mixable + the generalized AA \implies a constant regret (Reid et al. 2015)

Definition: The generalized mixability (or (η, Φ) -mixability) condition:

- \circ For all prior weights $\boldsymbol{q} \in \Delta_K$ on experts;
- For all experts' predictions $p_1, \ldots, p_K \in \mathcal{P}$;
- \circ There exists a prediction $p_* \in \mathcal{P}$;

$$\forall x, \ \ell(x, \boldsymbol{p}_*) \leq \inf_{\boldsymbol{\mu} \in \Delta_K} \sum_{k=1}^K \mu_k \cdot \ell(x, \boldsymbol{p}_k) + \frac{1}{\eta} D_{\Phi}(\boldsymbol{\mu}, \boldsymbol{q})$$

Main Results

- ℓ is (η, Φ) -mixable $\iff \frac{\eta_{\ell}}{\eta} \Phi \Phi_{\rm sh}$ is convex on Δ_K
- The Shannon entropy $\Phi_{\rm sh}(\boldsymbol{q}) \triangleq \boldsymbol{q}^{\mathsf{T}} \ln \boldsymbol{q}$ is fundamental:
 - $\succ \ell \text{ is } (\eta, \Phi) \text{-mixable} \implies \ell \text{ is } (\eta, \Phi_{sh}) \text{-mixable}$
 - \succ The generalized AA (GAA) achieves the lowest worst-case regret using $\Phi_{\rm sh}$

Main Results

- ℓ is (η, Φ) -mixable $\iff \frac{\eta_{\ell}}{\eta} \Phi \Phi_{\rm sh}$ is convex on Δ_K
- The Shannon entropy $\Phi_{\rm sh}(\boldsymbol{q}) \triangleq \boldsymbol{q}^{\mathsf{T}} \ln \boldsymbol{q}$ is fundamental:
 - $\succ \ell \text{ is } (\eta, \Phi) \text{-mixable} \implies \ell \text{ is } (\eta, \Phi_{sh}) \text{-mixable}$
 - \succ The generalized AA (GAA) achieves the lowest worst-case regret using Φ_{sh}
- We leveraged the similarity between mirror descent and the GAA to devise a new adaptive algorithm (AGAA) for the game of PwEA.
 The AGAA achieves a negative regret in some cases.

Poster: 10:45 AM -- 12:45 PM @ Room 210 & 230 AB #96