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Linear Stochastic Bandits (LSB)
Previous setting
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Exploration
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Learning setting
▶ 1. Given a set of arms represented by D ⊆ Rd

▶ 2. At time t, select an arm xt ∈ D, and observe
yt(xt) = ⟨xt, θ∗⟩+ ηt

▶ 3. The goal is to maximize
∑T

t=1 E[yt(xt)]

▶ 4. ηt follows a sub-Gaussian distribution (E[η2t ] < ∞)
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What Is A Heavy-Tailed Distribution?
Practical scenarios

▶ High-probability extreme returns in financial markets

Gaussian

NASDAQ returns

▶ Many other real cases
1. Delays in communication networks (Liebeherr et al., 2012)
2. Analysis of biological data (Burnecki et al., 2015)
3. ...
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LSB with Heavy-Tailed Payoffs
Problem definition

▶ Multi-armed bandits (MAB) with heavy-tailed payoffs
(Bubeck et al., 2013)

E[η1+ϵ
t ] < +∞, (1)

where ϵ ∈ (0, 1]

▶ Our setting: LSB with ηt satisfying Eq. (1)
▶ Weaker assumption than sub-Gaussian
▶ Medina and Yang (2016) studied LSB with heavy-tailed payoffs

sub-Gaussian heavy-tailed (ϵ = 1)

MAB O(T 1
2 ) O(T 1

2 ) by Bubeck et al. (2013)

LSB Õ(T 1
2 ) Õ(T 3

4 ) by Medina and Yang (2016)

▶ Can we achieve Õ(T 1
2 )?
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Algorithm: Median of means under OFU (MENU)
Framework comparison with MoM by Medina and Yang (2016)
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Regret Bounds

▶ Upper bounds

algorithm MoM MENU CRT TOFU

regret Õ(T
1+2ϵ
1+3ϵ ) Õ(T 1

1+ϵ ) Õ(T
1
2+

1
2(1+ϵ) ) Õ(T 1

1+ϵ )

▶ Lower bound: Ω(T
1

1+ϵ )

When ϵ = 1, our algorithms achieve Õ(T 1
2 )
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See You at the Poster Session

Time: Dec. 5th, 10:45 AM – 12:45 PM
Location: Room 210 & 230 AB #158


