Almost Optimal Algorithms for Linear Stochastic Bandits with Heavy-Tailed Payoffs

Han Shao*, Xiaotian Yu*, Irwin King and Michael R. Lyu

Department of Computer Science and Engineering The Chinese University of Hong Kong

NeurIPS, Dec. 2018

Linear Stochastic Bandits (LSB)

Previous setting

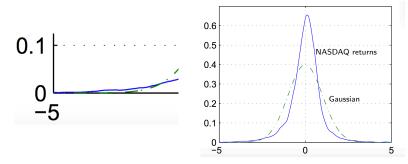
Learning setting

- ▶ 1. Given a set of arms represented by $D \subseteq \mathbb{R}^d$
- ▶ 2. At time *t*, select an arm $x_t \in D$, and observe $y_t(x_t) = \langle x_t, \theta_* \rangle + \eta_t$
- ▶ 3. The goal is to maximize $\sum_{t=1}^{T} \mathbb{E}[y_t(x_t)]$
- ▶ 4. η_t follows a sub-Gaussian distribution $(\mathbb{E}[\eta_t^2] < \infty)$

What Is A Heavy-Tailed Distribution?

Practical scenarios

High-probability extreme returns in financial markets



Many other real cases

- 1. Delays in communication networks (Liebeherr et al., 2012)
- 2. Analysis of biological data (Burnecki et al., 2015)

3. ...

LSB with Heavy-Tailed Payoffs

Problem definition

 Multi-armed bandits (MAB) with heavy-tailed payoffs (Bubeck et al., 2013)

$$\mathbb{E}[\eta_t^{1+\epsilon}] < +\infty,\tag{1}$$

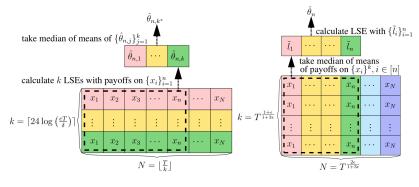
where $\epsilon \in (0, 1]$

- Our setting: LSB with η_t satisfying Eq. (1)
 - Weaker assumption than sub-Gaussian
 - Medina and Yang (2016) studied LSB with heavy-tailed payoffs

sub-Gaussian		heavy-tailed ($\epsilon=1$)		
MAB	$O(T^{\frac{1}{2}})$	$O(T^{rac{1}{2}})$ by Bubeck et al. (2013)		
LSB	$\widetilde{O}(T^{\frac{1}{2}})$	$\left ~ \widetilde{O}(T^{rac{3}{4}}) ight.$ by Medina and Yang (2016)		

• Can we achieve $\widetilde{O}(T^{\frac{1}{2}})$?

Algorithm: <u>Median of means under OFU</u> (MENU) Framework comparison with MoM by Medina and Yang (2016)



(a) Framework of MENU

(b) Framework of MoM

Regret Bounds

Upper bounds

algorithm	MoM	MENU	CRT	TOFU
regret	$\widetilde{O}(T^{\frac{1+2\epsilon}{1+3\epsilon}})\Big $	$\widetilde{O}(T^{\frac{1}{1+\epsilon}})$	$\widetilde{O}(T^{\frac{1}{2}+\frac{1}{2(1+\epsilon)}})$	$\widetilde{O}(T^{\frac{1}{1+\epsilon}})$

• Lower bound:
$$\Omega(T^{\frac{1}{1+\epsilon}})$$

When $\epsilon = 1$, our algorithms achieve $\widetilde{O}(T^{\frac{1}{2}})$

See You at the Poster Session

Time: Dec. 5th, 10:45 AM – 12:45 PM Location: Room 210 & 230 AB **#158**