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Greedy algorithm

Each step: max estimated reward (pure exploitation)

In the worst case: arbitrarily bad performance!

⇒ Exploration seems necessary...
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Smoothed Analysis

Suppose there is some randomness in the world...
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Results

Theorem. With a small amount of training data,

the Greedy algorithm achieves good performance.

Builds on Bastani, Bayati, Khosravi (2017).
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Results

Theorem. With a small amount of training data,

the Greedy algorithm achieves good performance.

n = poly(1/σ , 1/mini ǁβiǁ),

Regret ≤ O(√ T)

Theorem. In the single parameter setting (βi = β),
with no initial training data, Greedy achieves

Regret ≤ O(√ T)



Motivation and future work

(1) Understand when exploration is necessary

(2) Understand myopic decisionmaking:

•  Incentives

•  Fairness/ethics (medical treatments)

Thanks!


