A Smoothed Analysis of the Greedy Algorithm for Linear Contextual Bandits

Sampath Kannan Jamie Morgenstern Aaron Roth **Bo Waggoner** Z. Steven Wu University of Pennsylvania Georgia Tech University of Pennsylvania **Microsoft Research, NYC** University of Minnesota Neural Information Processing Systems, December 2018

Linear contextual bandits

Model for repeated decisionmaking:

Linear contextual bandits

Model for repeated decisionmaking:

Linear contextual bandits

Model for repeated decisionmaking:

Greedy algorithm

Each step: max estimated reward

(pure exploitation)

In the **worst case**: arbitrarily bad performance!

 \Rightarrow Exploration seems necessary...

Smoothed Analysis

Suppose there is some randomness in the world...

Results

Theorem. With a small amount of training data,

the Greedy algorithm achieves good performance.

Builds on Bastani, Bayati, Khosravi (2017).

Results

Theorem. With a small amount of training data, $n = poly(1/\sigma, 1/min_i // \beta_i //),$ the Greedy algorithm achieves good performance. Regret $\leq O(\sqrt{T})$

Results

Theorem. With a small amount of training data, $n = poly(1/\sigma, 1/min_i \|\beta_i\|),$ the Greedy algorithm achieves good performance. Regret $\leq O(\sqrt{T})$

Theorem. In the single parameter setting $(\beta_i = \beta)$, with *no initial training data*, Greedy achieves Regret $\leq O(\sqrt{T})$

Motivation and future work

(1) Understand when exploration is necessary

(2) Understand *myopic decisionmaking*:

- Incentives
- Fairness/ethics (medical treatments)

