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What is 𝒌-Means Clustering? 

Given: Data points  𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ ℝ𝒅 𝒏
  and parameter  𝒌 

 

Identify  𝒌  centers  𝑪 = 𝒖𝟏, … , 𝒖𝒌   minimizing  𝐜𝐨𝐬𝐭 𝑪 =  𝐦𝐢𝐧ℓ 𝒙𝒊 − 𝒖ℓ
𝟐
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✓ Probably the most well-studied clustering problem 
✓ Tons of applications 
✓ Super popular 
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What is Differentially Private 𝒌-Means?  
 

[Dwork, McSherry, Nissim, Smith 06]  (informal)  

 Every data point 𝒙𝒊 represents the (private) information of one individual 
 

 Goal: the output (the set of centers) does not reveal information that is specific to any single individual 
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 Requirement: the output distribution is insensitive to any arbitrarily change of a single input point 
             (an algorithm satisfying this requirement is differentially private) 
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 Every data point 𝒙𝒊 represents the (private) information of one individual 
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Why is that a good privacy definition? 
Even if an observer knows all other data point but mine, and now she sees the outcome 
of the computation, then she still cannot learn “anything” on my data point 
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Requirement: the output distribution is insensitive to any arbitrarily change of a single input point 
 
 
 Observe: With privacy we must have additive error 

• Assume 𝒌 = 𝒏 = 𝟑 
 

• OPT’s cost = 0 
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• OPT’s cost = 0 
 

• Move one point 
 

• OPT’s cost = 0 
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⟹  We assume that input points come from the unit ball 
 



Ref Model Runtime Bounds 

GLMRT’10 differential privacy 𝒏𝒅 𝐎 𝟏 ⋅𝐎𝐏𝐓 + 𝑶 𝒌𝟐 ⋅ 𝒅  

NCBN’16 differential privacy 𝐩𝐨𝐥𝐲 𝐎 𝐥𝐨𝐠 𝒌 ⋅𝐎𝐏𝐓 + 𝑶 𝒏  

FXZR’17 differential privacy 𝐩𝐨𝐥𝐲 𝑶 𝒌 𝐥𝐨𝐠 𝒏 ⋅𝐎𝐏𝐓 + 𝑶 𝒌𝟑/𝟐 ⋅ 𝒅  

BDLMZ’17 differential privacy 𝐩𝐨𝐥𝐲 𝑶 𝐥𝐨𝐠𝟑𝒏 ⋅𝐎𝐏𝐓 + 𝑶 𝒌𝟐 + 𝒅  

NS’18 differential privacy 𝐩𝐨𝐥𝐲 𝑶 𝒌 ⋅𝐎𝐏𝐓 + 𝑶 𝒌𝟏.𝟓𝟏 ⋅ 𝒅𝟎.𝟓𝟏  

New differential privacy 𝐩𝐨𝐥𝐲 𝑶 𝟏 ⋅𝐎𝐏𝐓 + 𝑶 𝒌𝟏.𝟎𝟏 ⋅ 𝒅𝟎.𝟓𝟏 + 𝒌𝟑/𝟐  

Previous and New Bounds 


