Differentially Private k-Means with Constant Multiplicative Error

Uri Stemmer Ben-Gurion University

joint work with

Haim Kaplan

<u>Given</u>: Data points $S = (x_1, ..., x_n) \in (\mathbb{R}^d)^n$ and parameter kIdentify k centers $C = (u_1, ..., u_k)$ minimizing $cost(C) = \sum_i min_\ell ||x_i - u_\ell||^2$

<u>Given</u>: Data points $S = (x_1, ..., x_n) \in (\mathbb{R}^d)^n$ and parameter kIdentify k centers $C = (u_1, ..., u_k)$ minimizing $cost(C) = \sum_i min_\ell ||x_i - u_\ell||^2$

- ✓ Probably the most well-studied clustering problem
- ✓ Tons of applications
- ✓ Super popular

<u>Given</u>: Data points $S = (x_1, ..., x_n) \in (\mathbb{R}^d)^n$ and parameter kIdentify k centers $C = (u_1, ..., u_k)$ minimizing $cost(C) = \sum_i min_\ell ||x_i - u_\ell||^2$

What is Differentially Private k-Means?

[Dwork, McSherry, Nissim, Smith 06] (informal)

- \checkmark Every data point x_i represents the (private) information of one individual
- ✓ Goal: the output (the set of centers) does not reveal information that is specific to any single individual

<u>Given</u>: Data points $S = (x_1, ..., x_n) \in (\mathbb{R}^d)^n$ and parameter kIdentify k centers $C = (u_1, ..., u_k)$ minimizing $cost(C) = \sum_i min_\ell ||x_i - u_\ell||^2$

What is Differentially Private k-Means?

[Dwork, McSherry, Nissim, Smith 06] (informal)

- \checkmark Every data point x_i represents the (private) information of one individual
- Goal: the output (the set of centers) does not reveal information that is specific to any single individual \checkmark
- Requirement: the output distribution is insensitive to any arbitrarily change of a single input point (an algorithm satisfying this requirement is *differentially private*)

Why is that a good privacy definition?

Even if an observer knows all other data point but mine, and now she sees the outcome of the computation, then she still cannot learn "anything" on my data point

What is Differentially Private k-Means?

[Dwork, McSherry, Nissim, Smith 06] (informal)

- Every data point x_i represents the (private) information of one individual
- **Goal:** the output (the set of centers) does not reveal information that is specific to any single individual \checkmark
- Requirement: the output distribution is insensitive to any arbitrarily change of a single input point (an algorithm satisfying this requirement is *differentially private*)

<u>Given</u>: Data points $S = (x_1, ..., x_n) \in (\mathbb{R}^d)^n$ and parameter k

Identify **k** centers $C = (u_1, ..., u_k)$ minimizing $cost(C) = \sum_i min_i ||x_i - u_i||^2$

Requirement: the output distribution is insensitive to any arbitrarily change of a single input point

<u>Given</u>: Data points $S = (x_1, ..., x_n) \in (\mathbb{R}^d)^n$ and parameter kIdentify k centers $C = (u_1, ..., u_k)$ minimizing $cost(C) = \sum_i min_i ||x_i - u_i||^2$ **Requirement:** the output distribution is insensitive to any arbitrarily change of a single input point

Observe: With privacy we must have additive error

- Assume k = n = 3
- OPT's cost = 0

<u>**Given:**</u> Data points $S = (x_1, ..., x_n) \in (\mathbb{R}^d)^n$ and parameter kIdentify k centers $C = (u_1, ..., u_k)$ minimizing $cost(C) = \sum_i min_i ||x_i - u_i||^2$ **Requirement:** the output distribution is insensitive to any arbitrarily change of a single input point

Observe: With privacy we must have additive error

- Assume k = n = 3
- OPT's cost = 0
- Move one point
- OPT's cost = 0

<u>Given</u>: Data points $S = (x_1, ..., x_n) \in (\mathbb{R}^d)^n$ and parameter kIdentify k centers $C = (u_1, ..., u_k)$ minimizing $cost(C) = \sum_i min_\ell ||x_i - u_\ell||^2$ **Requirement:** the output distribution is insensitive to any arbitrarily change of a single input point

Observe: With privacy we must have additive error

- Assume k = n = 3
- OPT's cost = 0
- Move one point
- OPT's cost = 0•
- Each solution must remain approx. equally likely
- On at least one of these inputs our cost is $\approx \Lambda^2$

<u>**Given:**</u> Data points $S = (x_1, ..., x_n) \in (\mathbb{R}^d)^n$ and parameter kIdentify k centers $C = (u_1, ..., u_k)$ minimizing $cost(C) = \sum_i min_\ell ||x_i - u_\ell||^2$ **Requirement:** the output distribution is insensitive to any arbitrarily change of a single input point

Observe: With privacy we must have additive error

- Assume k = n = 3
- OPT's cost = 0
- Move one point
- OPT's cost = 0
- Each solution must remain approx. equally likely
- On at least one of these inputs our cost is $\approx \Lambda^2$

\Rightarrow We assume that input points come from the unit ball

Previous and New Bounds

Ref	Model	Runtime	Bounds
GLMRT'10	differential privacy	n^d	$\mathbf{O}(1) \cdot \mathbf{OPT} + \widetilde{O}(k)$
NCBN'16	differential privacy	poly	$O(\log k) \cdot OPT +$
FXZR'17	differential privacy	poly	$O(k \log n) \cdot OPT + \widetilde{O}(k $
BDLMZ'17	differential privacy	poly	$O(\log^3 n) \cdot OPT + \widetilde{O}$
NS'18	differential privacy	poly	$\boldsymbol{O}(\boldsymbol{k}) \cdot \mathbf{OPT} + \widetilde{\boldsymbol{O}}(\boldsymbol{k}^{1.5})$
New	differential privacy	poly	$\boldsymbol{O}(1) \cdot \mathbf{OPT} + \widetilde{\boldsymbol{O}}(k^{1.01} \cdot d)$

 $(\mathbf{x}^2 \cdot \mathbf{d})$ $\widetilde{\boldsymbol{0}}(\boldsymbol{n})$ $\left(k^{3/2}\cdot\sqrt{d}
ight)$ (k^2+d) $^{1} \cdot d^{0.51}$ $(t^{0.51} + k^{3/2})$