
SUGAR
Geometry Based Data Generation

O. Lindenbaum, J.S. Stanley, G. Wolf, S. Krishnaswamy

Yale University

2018

Lindenbaum et al. (Yale) SUGAR 2018 1 / 14



Acknowledgements
This work was done in collaboration with:

Jay Stanley Guy Wolf Smita Krishnaswamy

Research partially funded
by grant from the CZI

Lindenbaum et al. (Yale) SUGAR 2018 2 / 14



Introduction & motivation
Traditional models: density based data generation

Generative models typically infer distribution from collected data, and
sample it to generate more data.

⇐

⇐

Biased by sampling density
May miss rare populations
Does not preserve the geometry

Lindenbaum et al. (Yale) SUGAR 2018 3 / 14



Introduction & motivation
Traditional models: density based data generation

Generative models typically infer distribution from collected data, and
sample it to generate more data.

⇐

⇐

Biased by sampling density
May miss rare populations
Does not preserve the geometry

Lindenbaum et al. (Yale) SUGAR 2018 3 / 14



Introduction & motivation
Traditional models: density based data generation

Generative models typically infer distribution from collected data, and
sample it to generate more data.

⇐

⇐

Biased by sampling density
May miss rare populations
Does not preserve the geometry

Lindenbaum et al. (Yale) SUGAR 2018 3 / 14



Introduction & motivation
New approach: geometry based data generation
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Diffusion geometry
Manifold learning with random walks

Local affinities g(x , y) ⇒ transition probs. Pr[x↝y] = g(x ,y)
∥g(x ,⋅)∥1

Markov chain/process ⇒ random walks on data manifold
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Diffusion geometry
Random walks reveal intrinsic neighborhoods
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Data generation with diffusion
Walk toward the data manifold from randomly generated points

Generate random points:

Walk towards the data manifold with diffusion: x ↦ ∑
y∈data

y ⋅ pt(x , y)
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Data generation with diffusion
Correct density with MGC kernel (Bermanis et al., ACHA 2016)

Separate density/geometry with new kernel: k(x ,y)= ∑
r∈data

g(x ,r),g(y ,r)
density(r)

Use new diffusion process p(x , y) = k(x ,y)
∥k(x ,⋅)∥1

to walk to the manifold
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Data generation with diffusion
Fill sparse areas to create uniform distribution

Question: How should we initialize new points to end up with
uniform sampling from the data manifold?
Answer: For each x ∈ data, initialize ˆ̀(x) points sampled from
N (x , Σx); set ˆ̀ as the mid-point between the upper & lower bounds
in the following proposition.

Proposition
The generation level ˆ̀(x) required to equalize density is bounded by

det (I + Σx
2σ2 )

1
2 max(d̂(⋅))−d̂(x)

d̂(x)+1 − 1 ≤ ˆ̀(x) ≤ det (I + Σx
2σ2 )

1
2 [max(d̂(⋅)) − d̂(x)] ,

where σ is a scale used when defining Gaussian neighborhoods g(x , y) for the
diffusion geometry, and d̂(x) = ∥g(x , ⋅)∥1 estimates local density.
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Applications & results
Alleviating class imbalance in classification

⇒

k-NN SVM RUSBoostOrig SMOTE SUGAR Orig SMOTE SUGAR
ACP 0.67 0.76 0.78 0.77 0.77 0.78 0.75
ACR 0.64 0.73 0.77 0.78 0.78 0.84 0.81
MCC 0.66 0.74 0.78 0.78 0.78 0.84 0.80

Average class precision/recall (ACP/ACR), and Matthews correlation coefficient
(MCC) over 61 imbalanced datasets (10-fold cross validation).
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Applications & results
Density correction improves clustering

Spectral Clustering Rand index of k-Means

Based on 115 datasets
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Applications & results
Illuminate hypothetical cell types in single-cell data from Velten et al. 2017

Recovering originally-undersampled lineage in early hematopoeisis:

B-cell maturation trajectory
enhanced by SUGAR

SUGAR equalizes the total cell
distribution
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Applications & results
Recover gene-gene relationships in single-cell data from Velten et al. 2017

SUGAR improves module correlation and MI identified by Velten et al.

Velten et al., Nature Cell Biology, 19 (2017)
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Applications & results
Recover gene-gene relationships in single-cell data from Velten et al. 2017

Generated cells also follow canonical marker correlations

Li et al., Nature communications 7 (2016)
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Conclusion

⇓

Generate data over intrinsic geometry rather than distribution
Alleviate sampling bias in supervised & unsupervised learning
Enable exploration of sparse (or “hypothetical”) data regions
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