Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding

http://nsvqa.csail.mit.edu
NeurIPS 2018

Kexin $\mathrm{Yi}^{1^{*}}$

Jiajun Wu2*

Chuang Gan ${ }^{3}$

Antonio Torralba²

Pushmeet Kohli ${ }^{4}$

Joshua B. Tenenbaum ${ }^{2}$

Task: Visual Reasoning

Question: Are there an equal number of large things and metal spheres?

Task: Visual Reasoning

Question: Are there an equal number of large things and metal spheres?

Task: Visual Reasoning

Question: Are there an equal number of large things and metal spheres?

Task: Visual Reasoning

Question: Are there an equal number of large things and metal spheres?

Task: Visual Reasoning

Question: Are there an equal number of large things and metal spheres?

Task: Visual Reasoning

CLEVR Dataset

CLEVR Dataset

- Synthetic images of shapes with compositional attributes

CLEVR Dataset

- Synthetic images of shapes with compositional attributes
- Machine generated questions paired with programs

Question: Are there an equal number of large things and metal spheres?

Program: equal_number(count(filter_size(Scene, Large)), count(filter_material(filter_shape(Scene, Sphere), Metal)))

Answer: Yes

Neural-Symbolic Visual Question Answering (NS-VQA)

I. Neural Scene Parsing

II. Neural Question Parsing
III. Symbolic Program Execution
ylinder 3. tilter_cube - 5. count

Neural-Symbolic Visual Question Answering (NS-VQA)

I. Neural Scene Parsing
II. Neural Question Parsing

III. Symbolic Program Execution

Neural-Symbolic Visual Question Answering (NS-VQA)

I. Neural Scene Parsing
II. Neural Question Parsing

III. Symbolic Program Execution

Neural-Symbolic Visual Question Answering (NS-VQA)

II. Neural Question Parsing
III. Symbolic Program Execution

Neural-Symbolic Visual Question Answering (NS-VQA)

II. Neural Question Parsing

III. Symbolic Program Execution

1. filter_cylinder		
2.	relate_behind	
ID	Size	Shape
1	Small	Cube
2	Large	Cube
3	Large	Cube
5	Large	Cube

Neural-Symbolic Visual Question Answering (NS-VQA)

I. Neural Scene Parsing

II. Neural Question Parsing

III. Symbolic Program Execution

ID	Size	Shape	...	ID	Size	...	
1	Small	Cube		2	Large	. \cdot	Answer: 3
2	Large	Cube	\ldots	3	Large	\ldots	
3	Large	Cube		5	Large	\ldots	
5	Large	Cube					

Neural-Symbolic Visual Question Answering (NS-VQA)

I. Neural Scene Parsing

II. Neural Question Parsing

How many cubes that are behind the cylinder are large?
III. Symbolic Program Execution

4. filter large 5. count

IID Size

Lrge

Large
Large

Neural-Symbolic Visual Question Answering (NS-VQA)

I. Neural Scene Parsing

II. Neural Question Parsing

III. Symbolic Program Execution

Neural-Symbolic Visual Question Answering (NS-VQA)

I. Neural Scene Parsing

II. Neural Question Parsing

III. Symbolic Program Execution

Neural-Symbolic Visual Question Answering (NS-VQA)

			CNN	ID	Size	Shape	Material	Color	X	y	Z
				1	Small	Cube	Metal	Purple	-0.45	-1.10	0.35
	Mask			2	Large	Cube	Metal	Green	3.83	-0.04	0.70
	R-CNN			3	Large	Cube	Metal	Green	-3.20	0.63	0.70
				4	Small	Cylinder	Rubber	Purple	0.75	1.31	0.35
				5	Large	Cube	Metal	Green	1.58	-1.60	0.70

I. Neural Scene Parsing

II. Neural Question Parsing

III. Symbolic Program Execution

1. filter_cylinder
2. relate_behind
3. filter_cube
4. filter_large
. count

Neural-Symbolic Visual Question Answering (NS-VQA)

	$\begin{gathered} \text { Mask } \\ \text { R-CNN } \end{gathered}$	CNN	ID	Size	Shape	Material	Color	x	y	z
			1	Small	Cube	Metal	Purple	-0.45	-1.10	0.35
			2	Large	Cube	Metal	Green	3.83	-0.04	0.70
			3	Large	Cube	Metal	Green	-3.20	0.63	0.70
			4	Small	Cylinder	Rubber	Purple	0.75	1.31	0.35
			5	Large	Cube	Metal	Green	1.58	-1.60	0.70

I. Neural Scene Parsing

II. Neural Question Parsing

III. Symbolic Program Execution

1. filter_cylinder
2. filter_cube
3. filter_large
4. count
5. relate_behind
.

How many cubes that are behind the \rightarrow cylinder are large?

\rightarrow| \qquadLSTM \rightarrow 1. filter_shape(scene, cylinder)
 LSTM
 Encoder
 LSTM \rightarrow 2. relate(behind)
 LSTM \rightarrow 3. filter_shape(scene, cube)
 LSTM \rightarrow 4. filter_size(scene, large)
 LSTM \rightarrow 5. count(scene) | |
| :--- | :--- |
| | |

\longrightarrow| ID | Size | Shape | Material | Color |
| :---: | :---: | :---: | :---: | :---: |
| 4 | Small | Cylinder | Rubber | Purple |

Neural-Symbolic Visual Question Answering (NS-VQA)

				ID	Size	Shape	Material	Color	x	y	z
	$\begin{gathered} \text { Mask } \\ \text { R-CNN } \end{gathered}$			1	Small	Cube	Metal	Purple	-0.45	-1.10	0.35
				2	Large	Cube	Metal	Green	3.83	-0.04	0.70
				3	Large	Cube	Metal	Green	-3.20	0.63	0.70
				4	Small	Cylinder	Rubber	Purple	0.75	1.31	0.35
				5	Large	Cube	Metal	Green	1.58	-1.60	0.70

I. Neural Scene Parsing

II. Neural Question Parsing

Neural-Symbolic Visual Question Answering (NS-VQA)

				ID	Size	Shape	Material	Color	x	y	z
	$\begin{gathered} \text { Mask } \\ \text { R-CNN } \end{gathered}$			1	Small	Cube	Metal	Purple	-0.45	-1.10	0.35
				2	Large	Cube	Metal	Green	3.83	-0.04	0.70
				3	Large	Cube	Metal	Green	-3.20	0.63	0.70
				4	Small	Cylinder	Rubber	Purple	0.75	1.31	0.35
				5	Large	Cube	Metal	Green	1.58	-1.60	0.70

I. Neural Scene Parsing

II. Neural Question Parsing

III. Symbolic Program Execution

How many cubes that are behind the \rightarrow cylinder are large?	LSTM Encoder	LSTM	\rightarrow 1. filter_shape(scene, cylinder)	1. filter_cylinder 2. relate_behind				. filt
		LSTM	\rightarrow 2. relate(behind)	ID	Size	Shape	Material	Color
		LSTM	\rightarrow 3. filter_shape(scene, cube) \longrightarrow	1	Small	Cube	Metal	Purple
		LSTM	$\rightarrow 4 . f i l t e r _s i z e(s c e n e, ~ l a r g e) ~$	2	Large	Cube	Metal	Green
		LSTM	\rightarrow 5. count(scene)	3	Large	Cube	Metal	Green
				5	Large	Cube	Metal	Green

Neural-Symbolic Visual Question Answering (NS-VQA)

Neural-Symbolic Visual Question Answering (NS-VQA)

I. Neural Scene Parsing

II. Neural Question Parsing

III. Symbolic Program Execution

How many cubes\rightarrow	LSTM Encoder	LSTM	\rightarrow 1. filter_shape(scene, cylinder)	1. filter_cylinder 2. relate_behind			3. filter_cube 4. filter_large		5. count
		LSTM	\rightarrow 2. relate(behind)	ID	Size	Shape	Material	Color	Answer: 3
		LSTM	\rightarrow 3. filter_shape(scene, cube) \longrightarrow	2	Large	Cube	Metal	Green	
cylinder are large?		LSTM	\rightarrow 4. filter_size(scene, large)	3	Large	Cube	Metal	Green	
		LSTM	\rightarrow 5. count(scene)	5	Large	Cube	Metal	Green	

Advantage 1: High Accuracy

- Symbolic reasoning is robust to longer logic traces
- Our model outperforms current state-of-the-art methods on CLEVR

Method	Accuracy (\%)
Human	92.6
RN	95.5
IEP	96.9
FiLM	97.6
MAC	98.9
TbD	99.1
NS-VQA (Ours)	$\mathbf{9 9 . 8}$

Advantage 2: Data Efficiency

- Our disentangled model requires fewer questions for training

Advantage 2: Data Efficiency

- Our disentangled model requires fewer questions for training
- 91% accuracy when trained on 1% questions (44% higher than strongest baseline)

Advantage 2: Data Efficiency

- Our disentangled model requires fewer questions for training
- 91% accuracy when trained on 1% questions (44% higher than strongest baseline)
- 99.7% accuracy when trained on 10% questions (14% higher than strongest baseline)

Advantage 3: Transparency and Interpretability

Question: What number of cylinders are gray objects or tiny brown matte objects?

Ours
 scene

filter small
filter_brown
filter_rubber
scene
filter_gray union
ilter_cylinder count

Answer: 1
Answer: 2

Question: Are there more yellow matte things that are right of the gray ball than cyan metallic objects?

Ours	IEP
scene	filter small
filter_cyan	filter_cyan
filter_metal	union
count	filter_brown
(4 modules)	. (25 modules)
scene	filter_small
filter_yellow	filter_yellow
filter_rubber	filter_rubber
greater than	greater than
Answer: no	Answer: no

Advantage 3: Transparency and Interpretability

Question: What number of cylinders are gray objects or tiny brown matte objects?

Ours
 scene

filter small
filter brown
filter_rubber
scene
filter_gray union
ilter_cylinder
count

Answer: 1
Answer: 2

Question: Are there more yellow matte things that are right of the gray ball than cyan metallic objects?
Ours IEP scene filter_small
filter_cyan union filter brown . (25 modules) filter_small filter_yellow filter_rubber count greater_than

Answer: no

Summary

- Neural-Symbolic VQA (NS-VQA)
- Disentangled visual reasoning
- Neural scene and question parsing
- Symbolic program execution

Method	Accuracy (\%)
Human	92.6
RN	95.5
IEP	96.9
FiLM	97.6
MAC	98.9
TbD	99.1
NS-VQA (Ours)	$\mathbf{9 9 . 8}$

- Advantages
- High accuracy (99.8\% on CLEVR)
- Data efficiency (99.7\% with 10\% training data)
- Interpretability and transparency

