

NEURIPS 2025

Inferring Cosmological Parameters

with CNN K-Fold Ensembling

An overview of the 6th place solution for the Weak Lensing ML Uncertainty Challenge

Andy Zhang
azhang81@jh.edu / fortybyte@gmail.com

What is Weak Lensing

- Dark matter does not interact with light directly but has mass, thus indirectly warping light like a black hole.
- Weak lensing is like a kaleidoscope
- Different universes are kaleidoscopes with different shapes in it

CNN

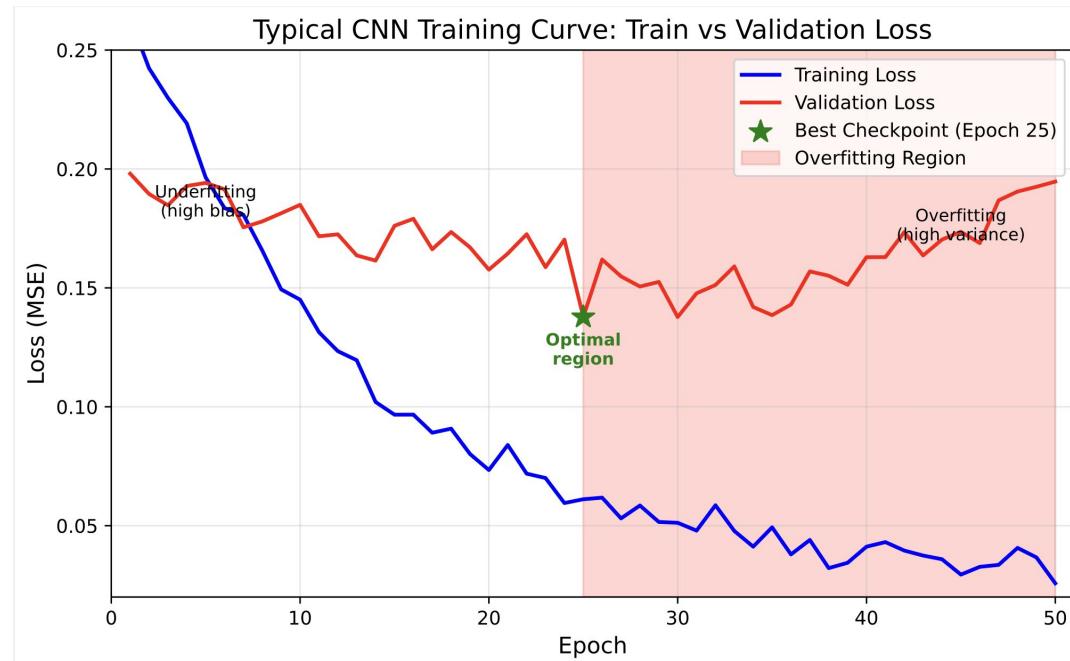
- Images classification means CNN
- Not a lot of data
- Perfect function from Weak Lensing Maps to Ω_m and S_8 is discrete

Regnext/Contrastive
Learning/Attention/Literally
Anything Else

**Specifically
Resnet18**

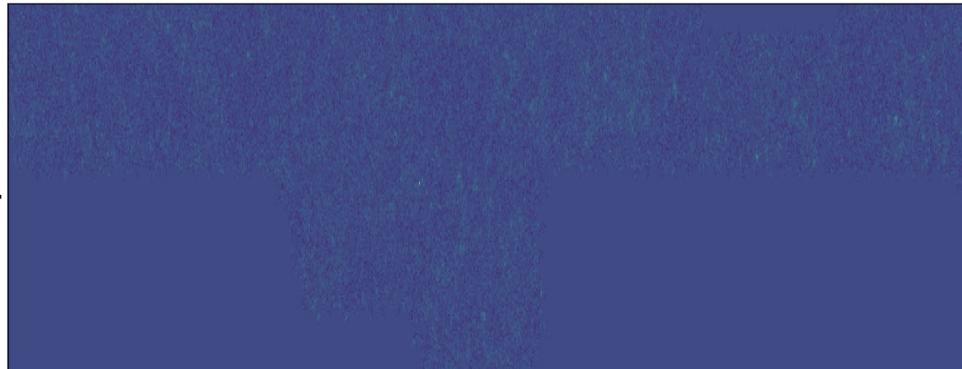
CNN

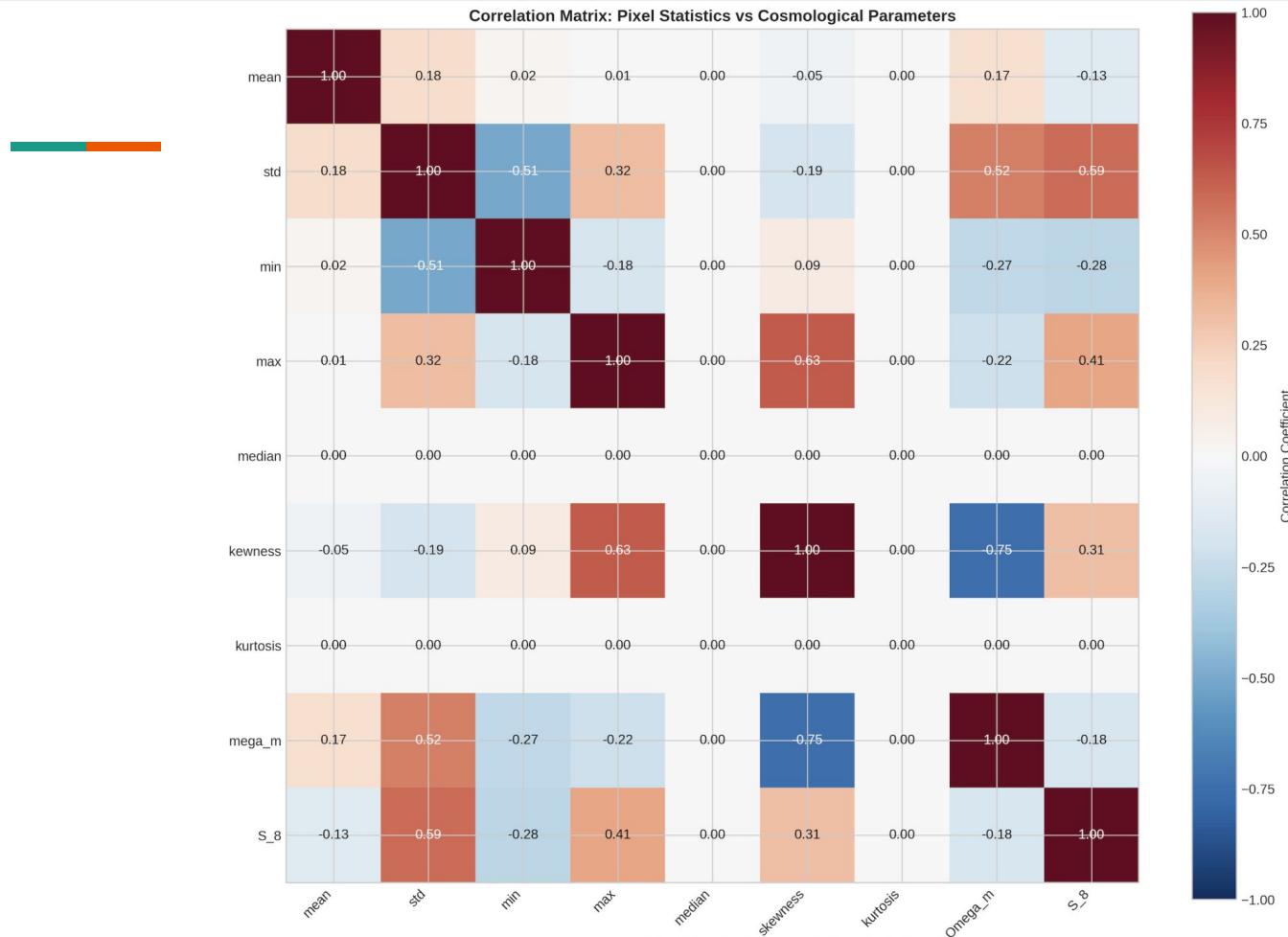
- RepVGG trained on four fifths of the data
- Obvious overfitting
- Model refused to guess exterior points



Generalization Challenge

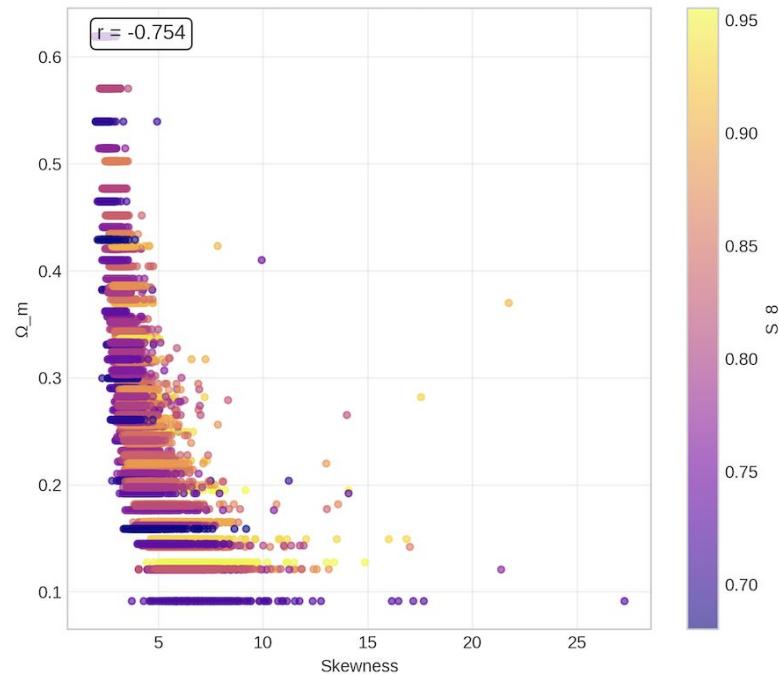
- Very Dense Features
- Impossible task for human eyes
- Data analysis reveals some interesting findings





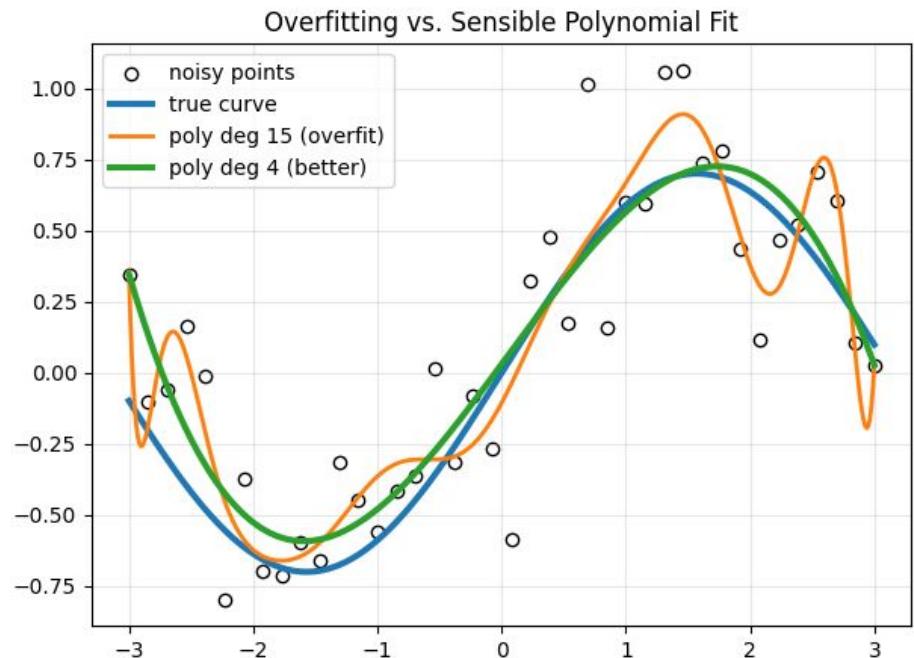
Generalization Challenge

- Ω_m is most highly correlated to skewness
- S_8 is most highly correlated to std
- Very few outliers



Generalization Challenge

- Requires Stable Validation Loss
- Larger Models
- Data Augmentation

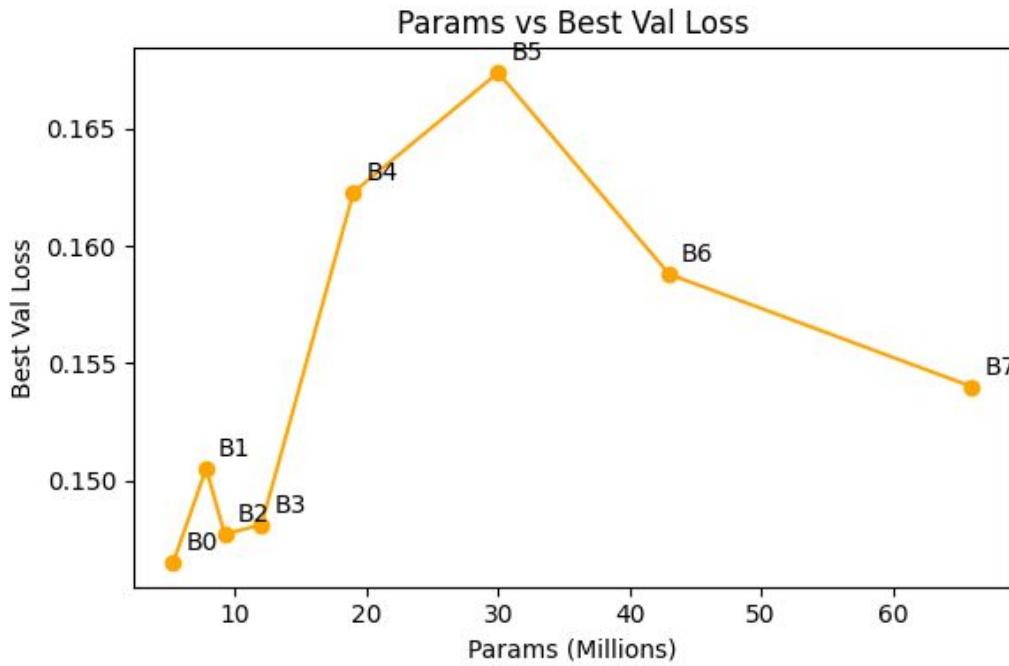


Double Descent

Model	Params	Time (min)	Best Val Loss	Best Epoch	Train Loss	Gap
B0	5.3M	19.9	0.1465	6	0.1289	0.059
B1	7.8M	24.1	0.1505	15	0.1728	-0.022
B2	9.2M	25.0	0.1477	8	0.1303	0.03
B3	12M	32.4	0.1481	6	0.1429	0.023
B4	19M	41.5	0.1623	9	0.2065	-0.037
B5	30M	56.4	0.1674	3	0.1177	0.051
B6	43M	72.0	0.1588	12	0.1172	0.042
B7	66M	96.4	0.154	6	0.0952	0.073

Double Descent

- Performance implies efficient net has double descent behavior on this dataset
- Not feasible to train models larger than B7
- B7 train time 5 times of B0 train time



Data Augmentation

Experimental Setup:

- EfficientNet-B3
- 15 epochs
- Batch size 16
- AdamW with 1e-3 learning rate and 1e-4 weight decay
- MSE Loss

Tested Augmentations:

- Random Horizontal and Vertical Flips
- Random Rotation
- Dropout
- Random Noise
- Mix-up
- Coordinate Channels

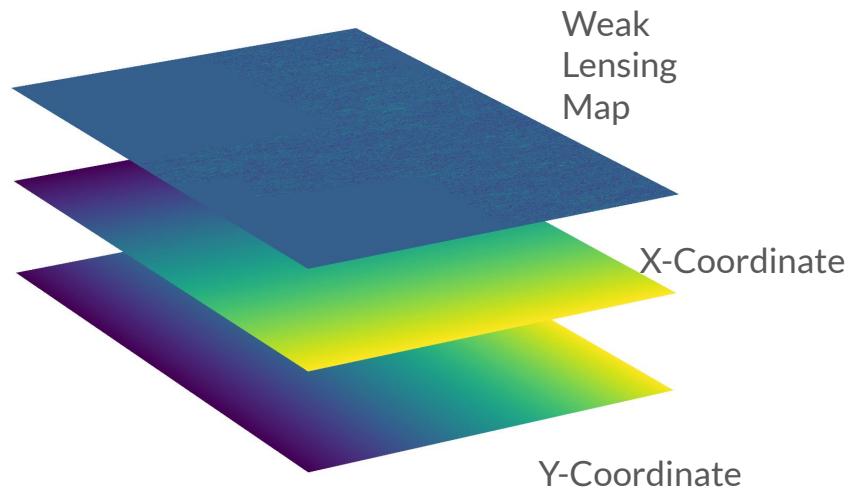
Data Augmentation

- Dropout, mixup, and random noise all had negative impact
- Extremely dense problem so any slight change to individual pixel values will deteriorate prediction ability

Augmentation	Val MSE	Best Ep.	vs None
None	0.002051	11	1.0×
Flip only	0.002802	11	1.37× ↓
Rotation only	0.001261	5	0.61× ↑
Flip + Rotation	0.000675	15	0.33× ↑

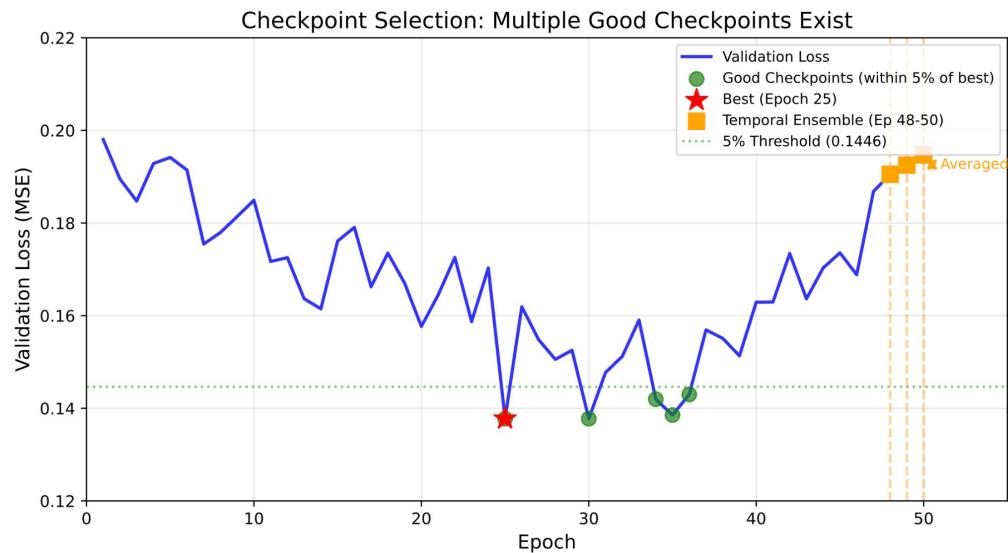
Coordinate Channels

- Second and third channel inputs became coordinates
- Specific areas may have specific indicators
- Sinusoidal or radial may perform better



K-Fold & Ensembling

- Does not require perfect convergence
- Decreases variance while keeping bias
- Uses full training data



K-Fold & Ensembling

- Does not require perfect convergence dynamics
- Decreases variance while keeping bias
- Uses full training data

For a single model f , the expected prediction error decomposes as:

$$\mathbb{E}[(y - f(x))^2] = \underbrace{(\mathbb{E}[f(x)] - f^*(x))^2}_{\text{Bias}^2} + \underbrace{\mathbb{E}[(f(x) - \mathbb{E}[f(x)])^2]}_{\text{Variance}} + \underbrace{\sigma_\epsilon^2}_{\text{Irreducible}}$$

where $f^*(x)$ is the true function and σ_ϵ^2 is irreducible noise.

Submission

Core Model: RepVGG-D2se CNN regressor → predicts (Ω_m, S_8)

- Split Across 5 Folds each with equal distribution of cosmologies
- Stability first training:
 - batch size 80
 - Grad accumulation
 - Ghost BatchNorm
- Two Phase Augmentation:
 - Flips and Rotations: Epochs 1-45
 - Just Flips: epochs 45-50
 - Test Time Augmentations
- MCMC Error Bar Estimation
 - 1.2x final scaling

K-Fold & Ensembling

- Split each 256 systematics into 5 Folds
- Select top 5 checkpoints among each fold compute inference with TTA
 - All 4 combinations of horizontal and vertical flips
- Throw out the farthest 30% of inferences to the average among all inferences in the fold
- Compute the final predictions for this fold by averaging the remaining inferences

Fold	Val Size	Train Size	Val Index Range
0	5,252	20,604	0–52
1–4	5,151	20,705	52–256

K-Fold & Ensembling

- Compute predicted points by averaging the cosmological inferences from the 5 folds
- Compute the error bars on the final model prediction using a weighted average
 - Since all folds are weighted equally w_k is 0.2

For K model predictions (μ_k, σ_k) :

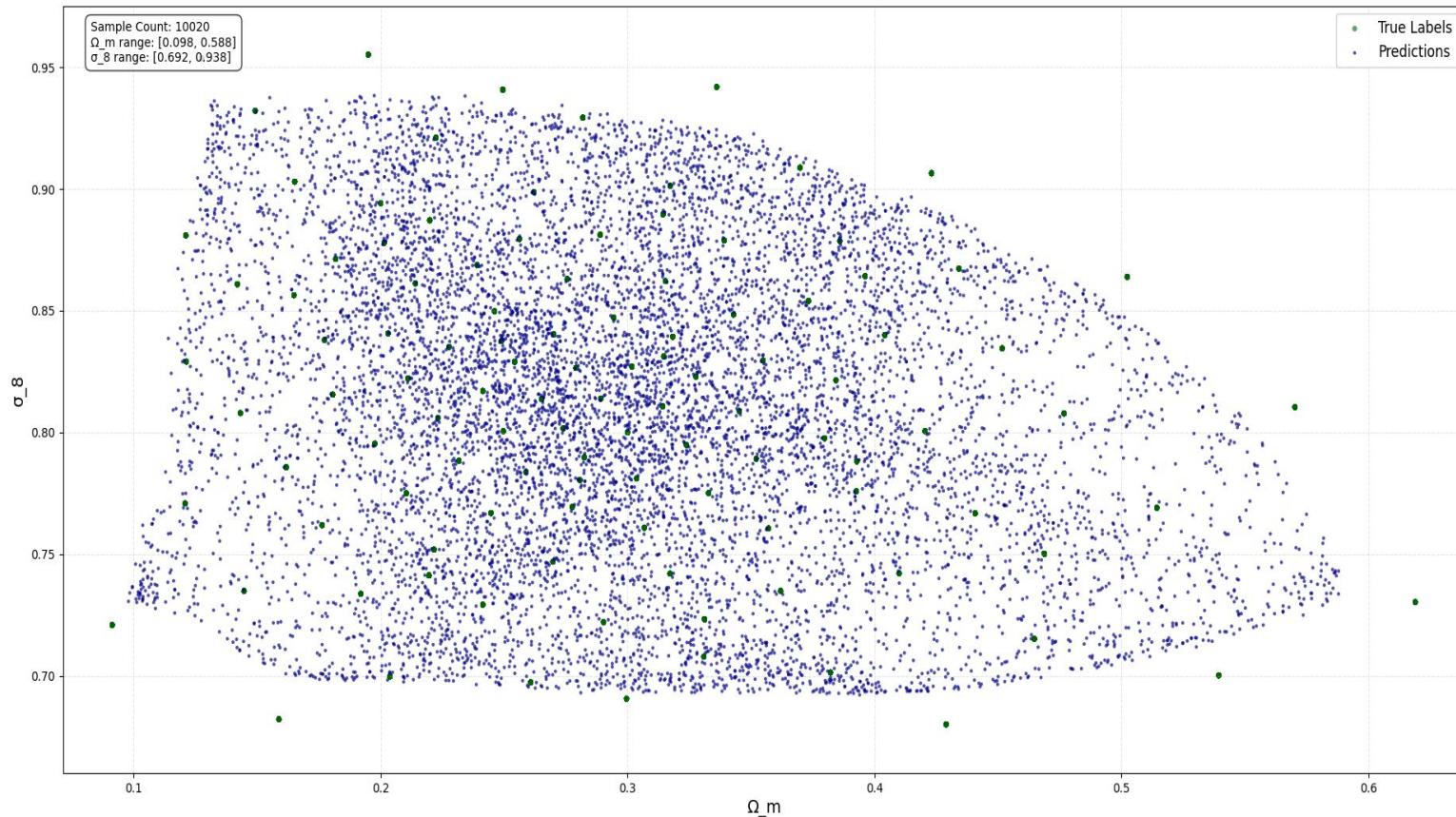
$$\sigma_{\text{mix}}^2 = \sum w_k \sigma_k^2 + \sum w_k (\mu_k - \mu_{\text{mix}})^2$$

K-Fold & Ensembling

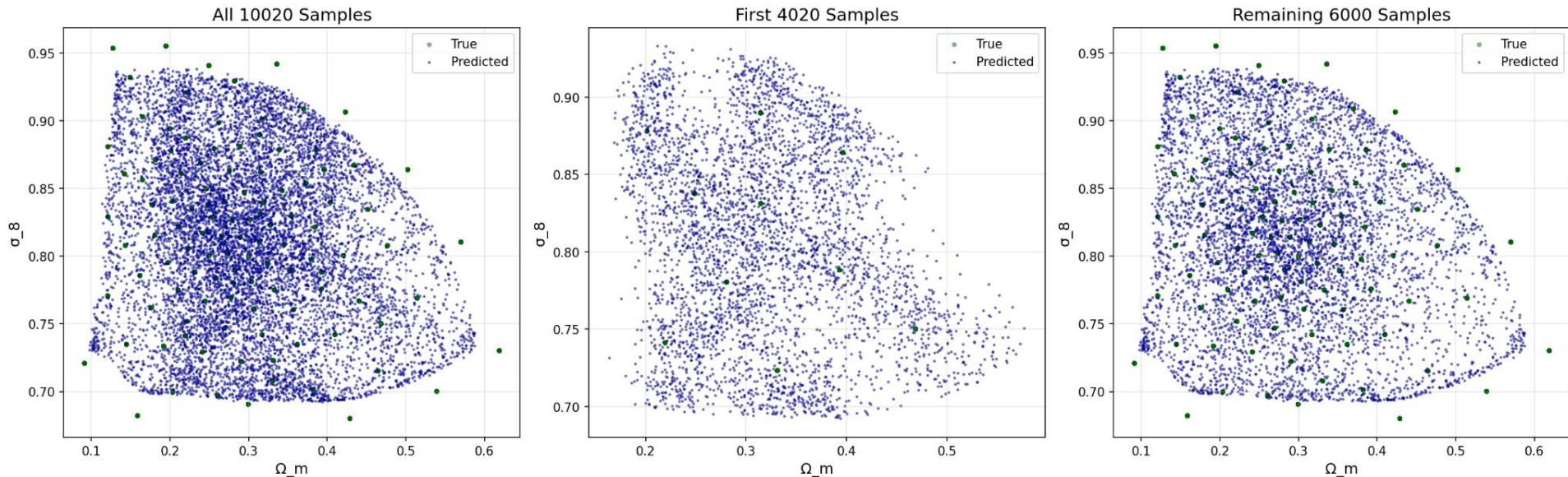
- Don't want to waste all the previous checkpoints
- Combine error bars using the aforementioned weighted average
- At least 0.2 score increase from singular model

Model Family	Weight	Role
RepVGG-D2se	0.50	Primary
EfficientNet-V2-L variants	0.15	Diversity
RepVGG variants	0.15	Diversity
EfficientNet-V2-L additional	0.10	Support
EfficientNet-B7 batch80	0.05	Support
EfficientNet-B7 batch64	0.05	Support

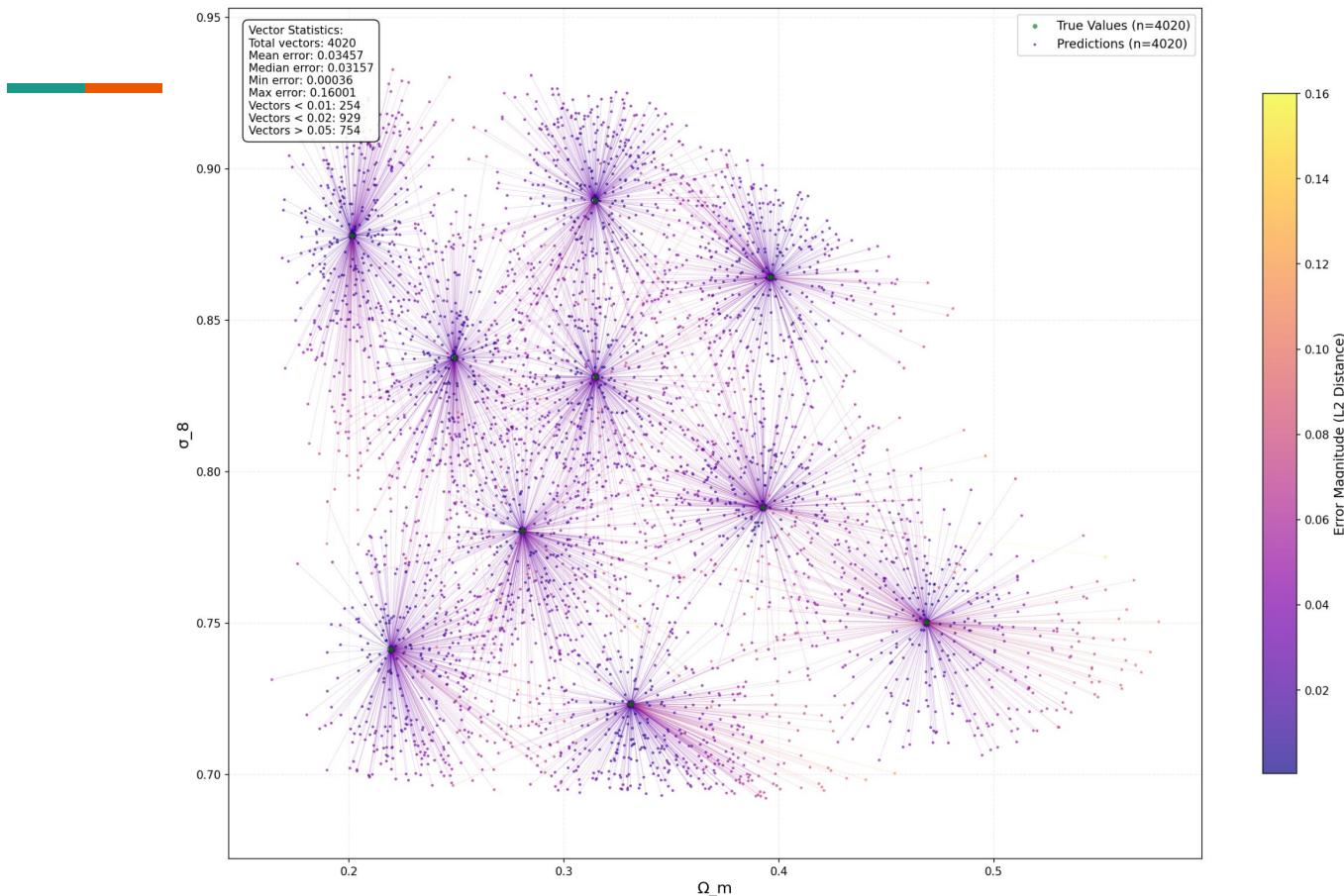
Predicted vs True Labels in Parameter Space
(10020 samples)



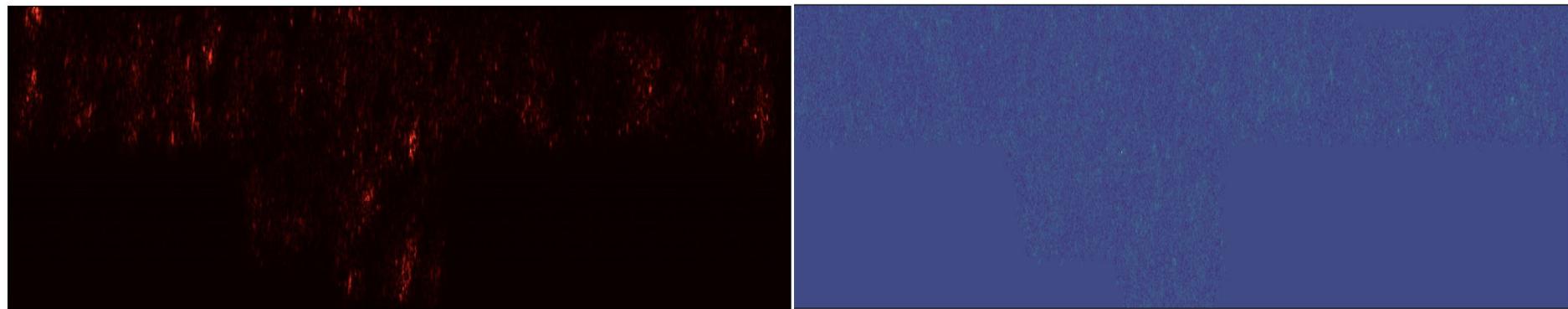
Predicted vs True Labels by Subset



Prediction Vectors: First 4020 Samples
ALL 4020 vectors shown (Predictions \rightarrow True Labels)

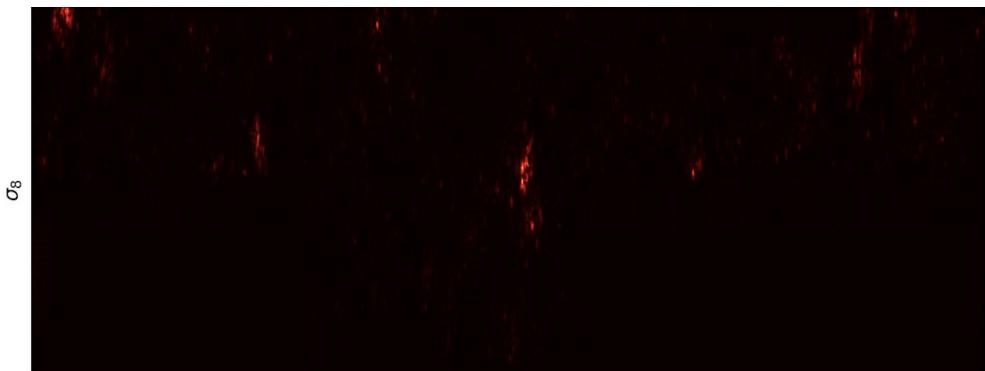


Activation: $\Omega_m = 0.3, S_8 = 0.8$



Activation: $\Omega_m = 0.3, S_8 = 0.8$

- Ω_m tends to depend on aspects of the entire weak lensing map
- S_8 tends to depend on a specific few aspects of the weak lensing map
- Requires entire map to make an optimal predictions



Submission

- 8th place on public test data
- 6th place on private test data

Score	MSE	Coverage
-------	-----	----------

1. 11.4163	0.1102	0.6951
------------	--------	--------

2. 10.8722	0.1121	0.6775
------------	--------	--------

3. 11.1442	0.1111	0.6863
------------	--------	--------

Conclusion

Traditional ML Techniques are able to go a long way, but don't get too demotivated if a novel approach does not work.

Questions & Comments

Welcome!