

Problem Definition

Learn a **universal, high-fidelity representation for financial K-line** (candlestick, OHLCVA) **time series foundation model** that supports both predictive and generative downstream tasks—principally multistep price/return forecasting, realized volatility forecasting, synthetic K-line generation, and trading simulation.

K-line Seqs: unique statistical properties

- ✓ low signal-to-noise ratios
- ✓ strong non-stationarities
- ✓ high-order dependencies

Mainstream TSFM: underserved financial tasks

- ✓ Low proportion in pre-training dataset
- ✓ Limited supports in downstream tasks
- ✓ underperforming than full-shot models

We Need a Foundation Model for Financial K-lines!

Methods

A hierarchical quantization-autoregressive architecture for K-line time-series modeling.

Tokenization Pipeline

- ✓ **Instance-based tokenization**: converts **continuous** K-line vectors into **discrete** tokens. 1 token = 1 K-line instance
- ✓ **BSQ: binary spherical quantization**: strict error bounds and strong robustness to anomalies; scalability to huge codebook sizes, such as 2^{20}

Pretraining Pipeline

- ✓ **Hierarchical discrete representation**: Model learns a **codebook C** , each x_t is quantized into a **coarse token** and a **fine token**: $x_t \rightarrow (b_t^c, b_t^f)$
- ✓ **Coarse-to-Fine Factorization**: Decoder factorizes the likelihood $p(b_t | b_{<t}) = p(b_t^c | b_{<t}) * p(b_t^f | b_{<t}, b_t^c)$

Experiments

Datasets

Coverage:

45 global exchanges,

12.1B K-lines

Asset Cate.: stocks, futures,

forex, options, and crypto;

Time Granularity: (7)

1, 5, 15, 30, 60m, d, w, 2w

Time Range:

Train/Val: pre ~ Jun. 2024

Test: Jul. 2024 ~ Jun. 2025

Market Range:

ID: NASDAQ, China, etc

OOD: Indonesia, Brazil, etc

Baselines

Full-shot Time Series Models: (8)

TimeMixer, iTransformer,

Dlinear, TimeXer, etc

Zero-shot Time Series Models: (5)

TimeMoE, Morai, etc.

Econometric Volatility Models: (2)

ARCH, GARCH

Generative Time Series Models: (3)

TimeGAN, DiffUTS, etc

Evaluations

Price/Rtn Forecasting:

IC and RankIC are calculated between the predicted and true series

Realized Volatility Forecasting:

MAE and R2

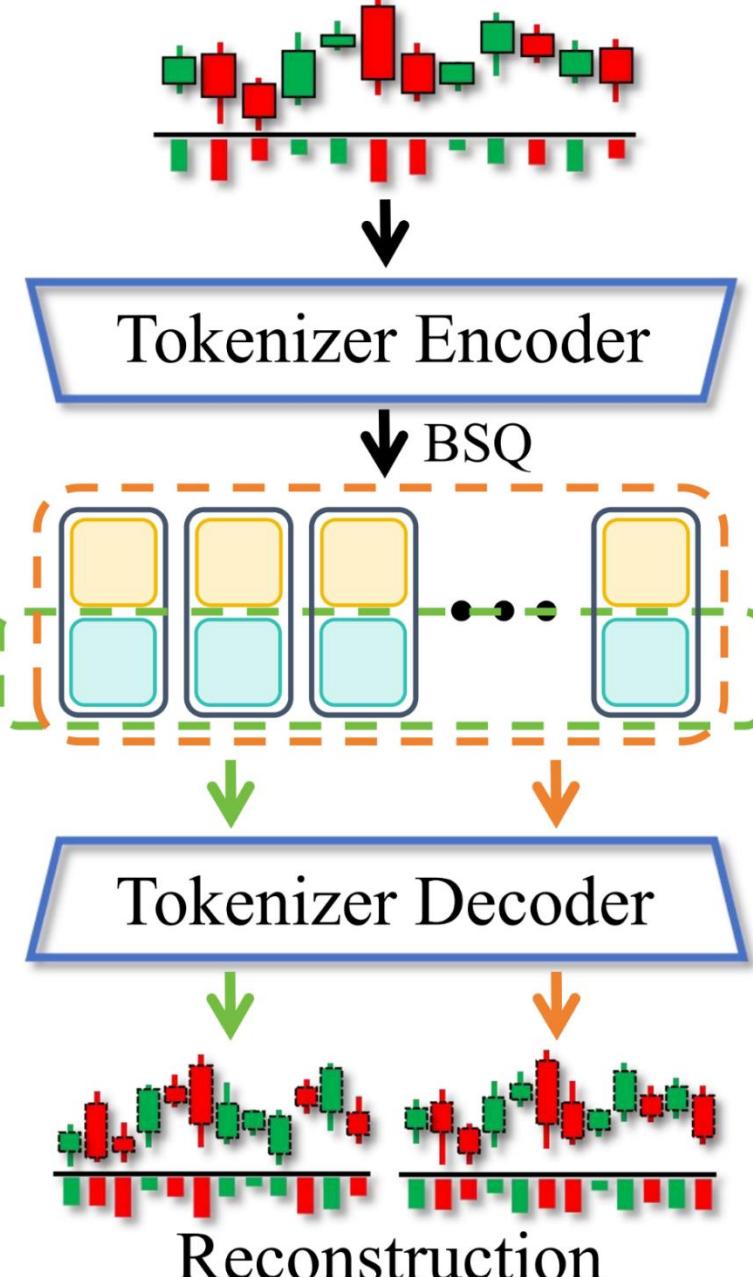
Synthetic K-line Generation:

Discriminative Score

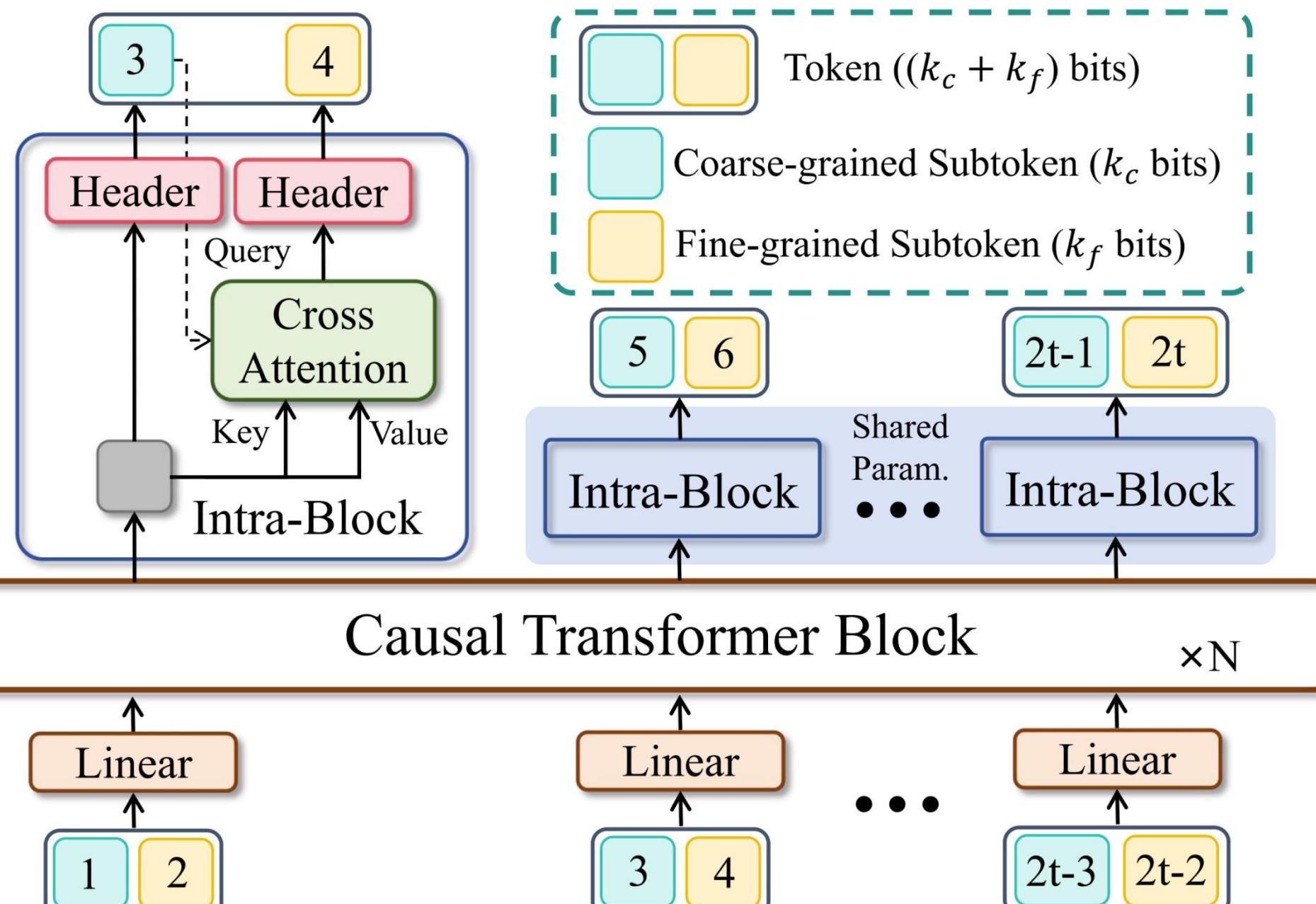
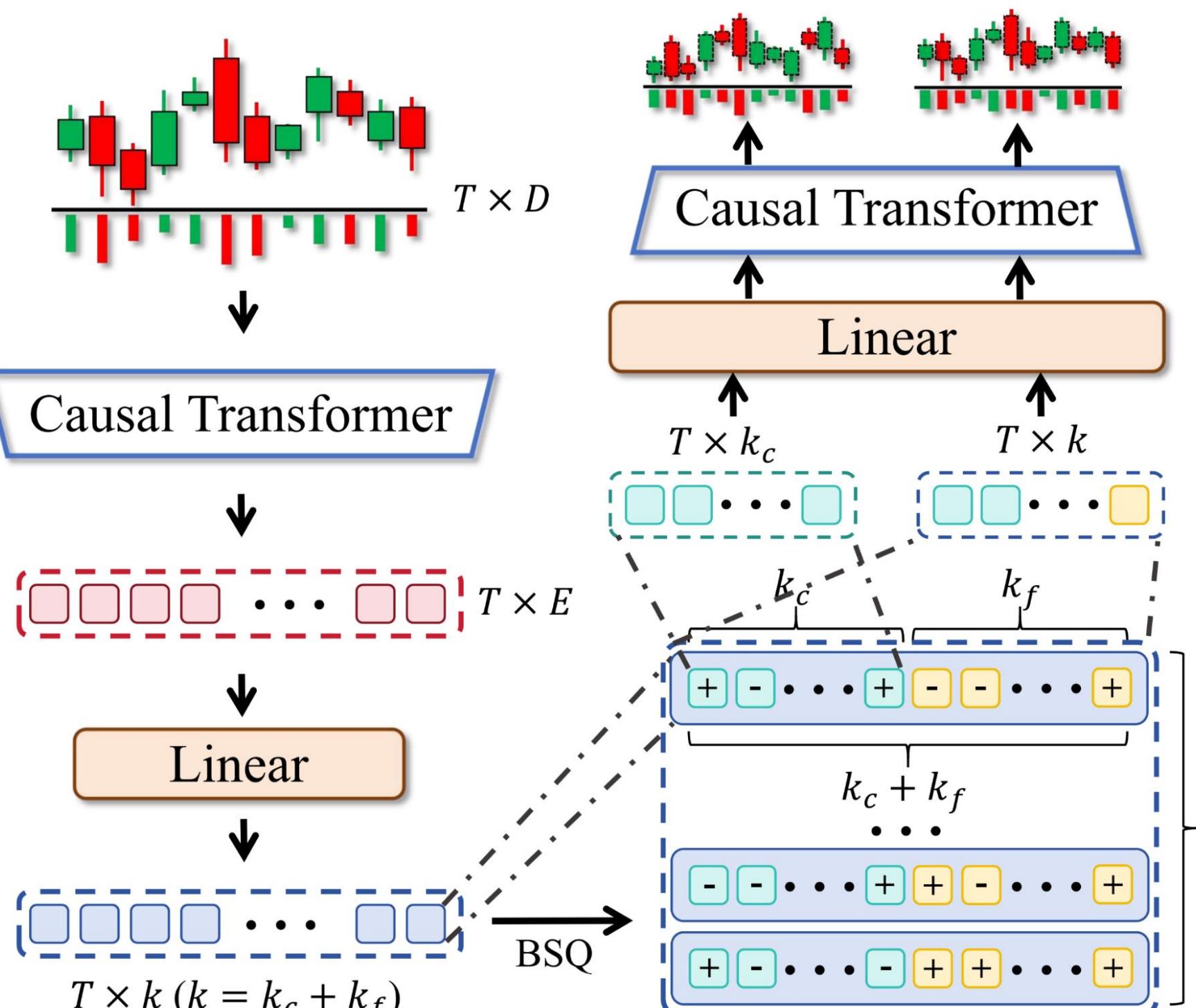
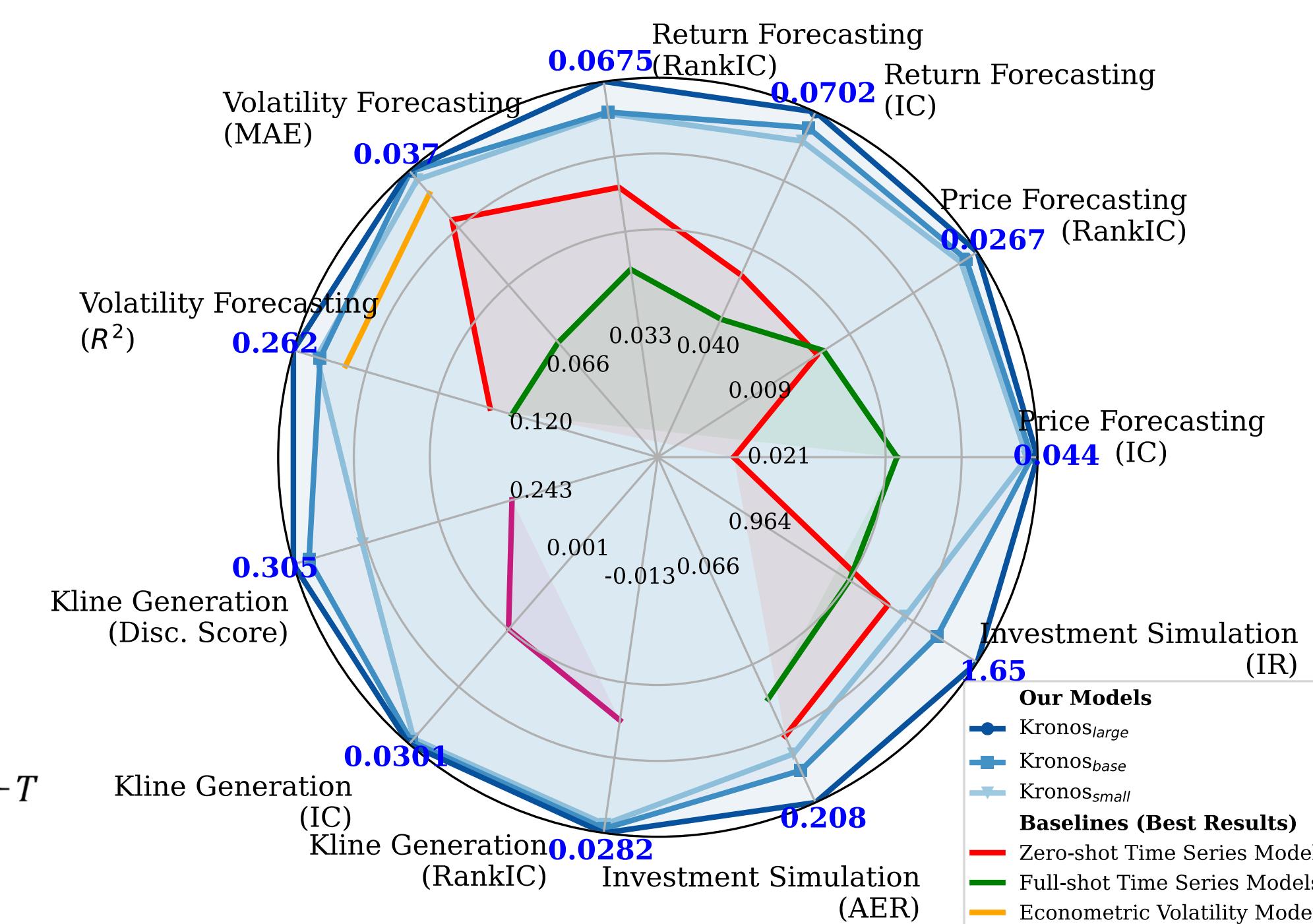
Investment Simulation:

Cumulative return and Cumulative Excess return

K-line Tokenization



Autoregressive Pre-training



Results

Task	Baseline Type	Best Baseline Model	Perf.	Ours Model	Perf.	Comparison
Price Forecasting	Zero shot	<i>TimeMoE_B</i>	0.0138	<i>Kronos_L</i>	0.0267	↑93%
	Full shot	<i>TimesNet</i>	0.0143			↑87%
Return Forecasting	Zero shot	Mourai	0.0533	<i>Kronos_L</i>	0.0675	↑27%
	Full shot	<i>DLinear</i>	0.0423			↑60%
Volatility Forecasting	Zero shot	<i>Moment_B</i>	0.0444	<i>Kronos_L</i>	0.0370	↑17%
	Full shot	<i>NSTrans.</i>	0.0627			↑41%
K-line Generation	/	<i>DiffUTS</i>	0.2504	<i>Kronos_L</i>	0.3408	↓36%
Investment Simulation	Zero shot	<i>Moment_L</i>	0.1655	<i>Kronos_L</i>	0.2193	↑33%
	Full shot	<i>TimesNet</i>	0.1441			↑52%

Insights

Discrete

Discrete tokenization improves sample efficiency and generalization, as well as reducing noise.

BSQ

Binary Spherical Quantization (BSQ) + hierarchical subtokens yield robustness and bounded error.

Factorization

Coarse→fine factorization reduces modeling complexity while preserving expressiveness.

Paper, Models & Code

Full paper, finetuning code, model weight, live demo can be found:

Arxiv

GitHub

Authors: shi-y23 or fzl22@mails.tsinghua.edu.cn