

A Second-Order SpikingSSM for Wearables

Kartikay Agrawal¹, Abhijeet Vikram², Vedant Sharma², Vaishnavi Nagabhushana¹, Ayon Borthakur¹
{a.kartikay,n.vaishnavi,ayon.borthakur}@iitg.ac.in

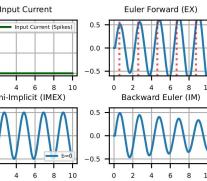
Motivation

- Wearables produce **huge, continuous physiological time series**.
- Requires models that handle **long-range temporal dependencies**.
- Spiking SSMs offer **low power + high throughput solutions** → perfect for on-device health analytics
- Second-order oscillatory neuronal states can capture long range dynamics and enable efficient parallel scans for SSMs.

Methods

• Harmonic-Resonate & Fire Neuron

$$\begin{aligned} u'(t) &= -\Omega v(t) + Bx(t) \\ v'(t) &= u(t) \\ z(t) &= \Theta(v(t) - \theta_C) \end{aligned} \quad (1)$$



• Discretisation

❖ Implicit Euler (IM)

$$\begin{aligned} u_n &= u_{n-1} + \Delta t(-\Omega v_{n-1} + Bx_n), & u_n &= u_{n-1} + \Delta t(-\Omega v_n + Bx_n), \\ v_n &= v_{n-1} + \Delta t u_n, & v_n &= v_{n-1} + \Delta t u_n, \\ s_n &= Ms_{n-1} + F_n, & s_n &= Ms_{n-1} + F_n, \end{aligned}$$

❖ Implicit Explicit (IMEX)

• SHaRe-SSM: A second-order Spiking Harmonic-Resonate & Fire State-Space Model

- Encoder:** data-driven spike encoding via linear layer + no-reset IF neuron (no manual rate coding).
- SHaRe-SSM Block:** HRF-based oscillatory dynamics, no resets, and parallel scan computation.
- Decoder:** linear classifier or **learnable kernel regressor** (convolutional filter) for regression outputs.

Algorithm

Algorithm 1 SHaRe-SSM Algorithm

Require: Input sequence x
Ensure: N -blocks, spike function Θ , output sequence o

```

 $z^0 \leftarrow \text{Encoder}(x)$  {Encode input sequence into spikes}
 $\text{for } n = 1, \dots, N \text{ do}$ 
   $z^n \leftarrow \text{solution of HRF in (1) with input } x^{n-1}$  via parallel scan aggregated
   $y^n \leftarrow Cz^n + Dx^{n-1}$  {Weighted spike mixing in (1)}
   $y^n \leftarrow \Theta(y^n - \theta_D^n)$ 
   $y^n \leftarrow \text{Linear}(y^n)$ 
   $y^n \leftarrow \Theta(y^n - \theta^n)$ 
   $x^n \leftarrow y^n + x^{n-1}$  {Spike mixing}
 $\text{end for}$ 
 $o \leftarrow \text{Decoder}(x^N)$  {Decode spikes}

```

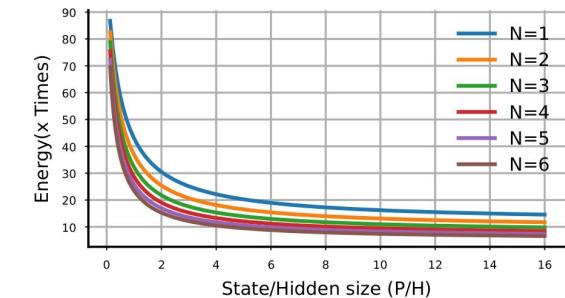
Very-Long Range Interactions

Highlights the potential of spiking models for scalable, real-world health monitoring.

Method	Integrator	SNN	PPG (MSE ↓)	EW (ACC ↑)
NRDE		No	9.9 ± 1.0	83.9 ± 7.3
NCDE		No	13.5 ± 0.7	75.0 ± 3.9
Log-NCDE		No	9.6 ± 0.6	85.6 ± 5.1
LRU		No	12.2 ± 0.5	87.8 ± 2.8
S5		No	12.6 ± 1.3	81.1 ± 3.7
S6		No	12.9 ± 2.1	85.0 ± 16.1
Mamba		No	10.7 ± 2.2	70.9 ± 15.8
LinOSS	IM	No	7.5 ± 0.5	95.0 ± 4.4
Ours	IM	Yes	11.8 ± 0.9	92.8 ± 3.3
RHEL-Lin	IMEX	No	9.5 ± 1.0	75.0 ± 9.9
RHEL-Nonlin	IMEX	No	8.4 ± 0.5	50.1 ± 6.7
LinOSS	IMEX	No	6.4 ± 0.2	80.0 ± 4.4
Ours	IMEX	Yes	9.1 ± 0.2	90.0 ± 5.7

Energy Estimate

- IMEX: $\sim 52.1 \times$ and IM: $\sim 25.4 \times$ more energy-efficient than LinOSS on EigenWorms.
- IMEX improves accuracy by $\sim 10\%$, while IM trades a slight drop (92.8% vs. 95%) for massive energy savings.



Conclusion and Future Work

- SHaRe-SSM:** A second-order spiking state-space model using harmonic resonate-and-fire neurons.
- Fully spike-based:** No GeLU/GLU → lower energy, neuromorphic-optimal.
- Learns end-to-end:** Includes trainable encoder, decoder, and parallel scan for long sequences.
- Optimized for long-range modeling:** Handles 18k–50k length sequences efficiently.
- Energy-efficient:** Outperforms prior SSMs with **significantly lower compute cost**.
- Wearable-ready:** Ideal for **healthcare edge devices** due to low power + long-sequence capability.
- Future direction:** Deployment on **real-time edge AI**.

References

Saya Higuchi et al. (2024). "Balanced Resonate-and-Fire neurons." In: Proceedings of the 41st International Conference on Machine Learning, PMLR 235:18305–18323, 2024.

T. Konstantin Rusch and Daniela Rus (2025). "Oscillatory state-space models." In: The Thirteenth International Conference on Learning Representations, 2025

Guillaume Porel and Maxence Emrouz (2025). "Learning long range dependencies through time reversal symmetry breaking." In: The Thirty-ninth Annual Conference on Neural Information Processing Systems, 2025

Albert Gu and Tri Dao. (2023). "Mamba: Linear-time sequence modeling with selective state spaces." arXiv preprint arXiv:2312.00752, 2023

¹AV, VS are BS interns from IISER Pune, KA, VN are PhD students, AB is the PI.

²For more details about our team, scan the QR code given here.

³Paper Link: <https://openreview.net/forum?id=hv62KE0sh>

Human Activity Recognition

Short-window wearable-sensor to demonstrate real-world, low-power human activity recognition.

