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● SHaRe-SSM: A second-order Spiking Harmonic-Resonate & Fire 
State-Space Model
○ Encoder: data-driven spike encoding via linear layer + no-reset IF 

neuron (no manual rate coding).
○ SHaRe-SSM Block: HRF-based oscillatory dynamics, no resets, and 

parallel scan computation.
○ Decoder: linear classifier or learnable kernel regressor 

(convolutional filter) for regression outputs.

➔ SHaRe-SSM: A second-order spiking state-space model using 
harmonic resonate-and-fire neurons.

➔ Fully spike-based: No GeLU/GLU → lower energy, 
neuromorphic-optimal.

➔ Learns end-to-end: Includes trainable encoder, decoder, and 
parallel scan for long sequences.

➔ Optimized for long-range modeling: Handles 18k–50k length 
sequences efficiently.

➔ Energy-efficient: Outperforms prior SSMs with significantly lower 
compute cost.
Wearable-ready: Ideal for healthcare edge devices due to low power 
+ long-sequence capability.

➔ Future direction: Deployment on real-time edge AI.

● Wearables produce huge, continuous physiological time series.
● Requires models that handle long-range temporal dependencies.
● Spiking SSMs offer low power + high throughput solutions → 

perfect for on-device health analytics
● Second-order oscillatory neuronal states can capture long range 

dynamics and enable efficient parallel scans for SSMs.

52.1× less
Energy 

Method Integrator SNN PPG (MSE ↓) EW (ACC ↑)

NRDE No 9.9 ± 1.0 83.9 ± 7.3

NCDE No 13.5 ± 0.7 75.0 ± 3.9

Log-NCDE No 9.6 ± 0.6 85.6 ± 5.1

LRU No 12.2 ± 0.5 87.8 ± 2.8

S5 No 12.6 ± 1.3 81.1 ± 3.7

S6 No 12.9 ± 2.1 85.0 ± 16.1

Mamba No 10.7 ± 2.2 70.9 ± 15.8

LinOSS IM No 7.5 ± 0.5 95.0 ± 4.4

Ours IM Yes 11.8 ± 0.9 92.8 ± 3.3

RHEL-Lin IMEX No 9.5 ± 1.0 75.0 ± 9.9

RHEL-Nonlin IMEX No 8.4 ± 0.5 50.1 ± 6.7

LinOSS IMEX No 6.4 ± 0.2 80.0 ± 4.4

Ours IMEX Yes 9.1 ± 0.2 90.0 ± 5.7

● EigenWorms: 18k extremely long 18k sequences of very long C. elegans motion traces.
● PPG-DaLiA; 50k heart-rate sequences (128 Hz, long 150-min sessions × 15 participants).

Highlights the potential of spiking models for scalable, real-world health monitoring.
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25.4× less
Energy 

Human Activity Recognition
Short-window wearable-sensor to demonstrate real-world, low-power human activity recognition.

● UCI-HAR: 10.3k samples • 30 subjects • 6 activities • Acc+Gyro @ 50 Hz
● UniMB-SHAR: 11.7k samples • 17 activities • Acc only ≤ 50 Hz

Energy Estimate
● IMEX: ~52.1× and IM: ~25.4× more energy-efficient than LinOSS on 

EigenWorms.
● IMEX improves accuracy by ~10%, while IM trades a slight drop 

(92.8% vs. 95%) for massive energy savings.

❖ Implicit Euler (IM) ❖ Implicit Explicit (IMEX)

Algorithm

*AV, VS are BS interns from IISER Pune, KA, VN are PhD students, AB is the PI. 
* For more details about our team, scan the QR code given here.
* Paper Link: https://openreview.net/forum?id=hv52KEOshb

https://openreview.net/forum?id=hv52KEOshb

