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| Very-Long Range Interactions | Energy Estimate

Wearables produce huge, continuous physiological time series. Highlights the potential of spiking models for scalable, real-world health monitoring. e IMEX: ~52.1x and IM: ~25.4x more energy-efficient than LinOSS on

e Requires models that handle long-range temporal dependencies. EigenWorms.
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Vp = Up1 + At up, Vp = Up1 + At uy, e EigenWorms: 18k extremely long 18k sequences of very long C. elegans motion traces. - SHaRe-SSM: A second-order spiking state-space model using
Sp = Msp_1 + Fy, Sp = Msp_1 + Fy, o PPG-DaLiA; 50k heart-rate sequences (128 Hz, long 150-min sessions x 15 participants). harmonic resonate-and-fire neurons.

- Fully spike-based: No GeLU/GLU — lower energy,

e SHaRe-SSM: A second-order Spiking Harmonic-Resonate & Fire Human ACtIVIty ReCOgni on neuromorphic-optimal.
State-Space Model Learns end-to-end: Includes trainable encoder, decoder, and

o Encoder: data-driven spike encoding via linear layer + no-reset IF : Short-window wearable-sensor to demonstrate real-world, low-power human activity recognition.
neuron (no manual rate coding). |
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parallel scan for long sequences.

Performance Comparison of Models on Humar Activity Recognition - Optimized for long-range modeling: Handles 18k—50k length
o SHaRe-SSM Block: HRF-based oscillatory dynamics, no resets, and CNN RNN Tansforiiers Spiking CNN/RNNs Spiking SSMs sequences efficiently.
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e UniMB-SHAR: 11.7k samples « 17 activities * Acc only < 50 Hz
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