Synergizing Large Language Models and
Theory for Human-like Causal Reasoning

Introduction & Background

Genuine human-like causal reasoning (level-2) is fundamental for AGI, while
current LLMs rely on shallow statistical patterns (level-7) learned from training.
Human causal reasoning is a sophisticated cognitive process:

« Stage 1 — Humans establish a basic causal chain. For example, but-for
causes in philosophy and law. This process creates a foundational set of
potential causes without evaluating their relative importance.

« Stage 2 — Psychological and normative factors modulate the initial causal
structure to produce a final judgment. This is where human reasoning
diverges from purely logical models.

These two stages correspond directly to two complementary fields:

« Actual Causality — A formal approach that models the first stage by focusing
on attribution and responsibility assignment, determining whether an event is
structurally part of the causal chain in a specific context.

« Causal Judgment — A cognitive science approach that models the second
stage by studying how modulatory factors like morality, normality, and intent
systematically influence humans’ selection of causes.

However, these two domains have largely been studied in isolation. A systematic

LLM-based framework that integrates both actual causality and causal judgment

IS lacking.

Also, existing evaluation suites such as CausalProbe are insufficient for

assessing this fine-grained causality in the context of level-2 reasoning.

Story: Janet is an employee in a factory. Since she works in the maintenance department, she knows how to grease and oil all of

did not put oil in the machine, and Kate also did not put oil in the machine. The machine broke down a few days later.
Question: Did Kate not putting oil in the machine cause the machine to break down?
Ground Truth Answer: Yes
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The HCR-Reasoner Framework

HCR-Reasoner is a framework that integrates LLMs with theory for human-like
causal reasoning. It operates in three stages, ending with a causal judgment with
an explanation.

« Causal Setting Establishment — It identifies causally relevant events (i.e.,
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Theory-guided Algorithmic Reasoning — It finally employs theory-guided
algorithmic reasoning that utilizes these inferred factor values to derive the

final causal judgment and generate an explanation.
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« HCR-Reasoner can effectively enable LLMs to replicate human consensus in
causal jJudgments without relying on domain experts or crowd annotators.

Main Results
« HCR-Reasoner derives consistent improvement, with greater gains in

> stronger models.
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Results of the pilot study on Big-Bench Hard. Results of the ablation study on HCR-Bench.
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for each E; € C, do f;fgp — B(fF-, fiEs) ;

if fiosp < max{fZs, | Es € Cs} then A.append(“Yes”);
else .A.append(“No”);

else if fZ A —fEZ then

if fZ Vv f then A.append(“Yes”);

else

Ca ¢ {E' €C| f N2 }:

for each E, € C, do fZ2, = ®(f5_);

if f, Egsp = max{fi’gp | Eq € Co} then A.append(“Yes”);
else .A.append(“No”);

B else CONTINUE;

return “Yes” if A contains “Yes”, else “No”*;

The HCR-Bench Benchmark

We introduce HCR-Bench, a dataset containing 1,093 carefully annotated
instances with detailed reasoning steps, offering a more fine-grained evaluation
of level-2 causal reasoning. Derived from Big-Bench Hard causal judgment,
HCR-Bench involves data cleaning, annotation (i.e., reasoning steps),
augmentation, and verification. It is more challenging than Big-Bench Hard

causal judgment due to the introduction of more spurious correlations and fewer

explicit causal cues (e.g., “When E1 and E2 occur, O will occur.™).

Results & Discussion
Pilot Study

events, respectively.

Ablation Study

* The first stage alone degrades performance. Combining the first two stages
typically improves performance. Algorithmic reasoning yields the most
substantial gains.

« “Slow thinking” models perform poorly independently, but achieves the largest
performance gains with HCR-Reasoner.

Fine-grained Analysis

« OQverall performance is driven by factor value inference. However, there is no
clear correlation between fine-grained accuracies and the overall accuracy.

* Only Qwen2.5-72B-Instruct and Claude-3.5-Sonnet exhibit faithful reasoning,
while GPT-4 appears to utilize shortcuts.
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Fine-grained accuracies of different factors. Results of the causal analysis.

candidate causes and the outcome) within the provided causal scenario.
« Factor Value Inference — It then infers the values of factors for candidate
causes.

. o . More Info
« HCR-Reasoner consistently and significantly improves performance of LLMs.

 Closed-source LLMs benefit more from HCR-Reasoner.
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