

# Graph Distance as Surprise: Free Energy Minimization in Knowledge Graph Reasoning

Gaganpreet Jhajj    Fuhua Lin

School of Computing and Information Systems  
Athabasca University, Canada

NORA Workshop @ NeurIPS 2025

# Motivation: From Neuroscience to AI

## The Free Energy Principle (FEP)

Biological systems minimize surprise by maintaining accurate world models

**Recent breakthrough:** Murphy et al. (2024) showed that syntactic operations minimize surprise through **tree depth structures**

**Can we extend this to knowledge graphs?**

# The Challenge

Unlike syntactic trees, knowledge graphs are:

- ▶ Directed graphs with cycles – not simple trees
- ▶ Multiple paths between nodes
- ▶ Complex semantic relationships

We need a framework that:

- ▶ Handles cycles naturally
- ▶ Maintains theoretical grounding in FEP
- ▶ Works for general graphs

## Our Approach: Graph Distance as Surprise

**Key Insight:** Use shortest-path distance to measure surprise

$$S_{\text{geo}}(e \mid C) = \begin{cases} \min_{c \in C} d_{\mathcal{G}}(c, e) & \text{if path exists} \\ \alpha & \text{otherwise} \end{cases}$$

where  $d_{\mathcal{G}}(c, e)$  is computed via breadth-first search (BFS)

- ▶ Shorter distances → higher probability → lower surprise
- ▶ Disconnected entities → high surprise ( $\alpha$ )

# Why This Works: Three Justifications

## 1. Proper Generalization

- ▶ For trees, recovers Murphy's tree depth exactly

## 2. Least-Action Principle

- ▶ Shortest paths minimize cumulative cost
- ▶ Aligns with active inference

## 3. Computational Grounding

- ▶ In GNNs,  $k$  message-passing iterations =  $k$ -hop neighborhoods
- ▶ Minimizing iterations = minimizing distance

**Bonus:** Cycles handled naturally (BFS uses visited sets)

## Example: Canadian Prime Ministers

**Query:** "Who is the Prime Minister?"

**Context:** Canada

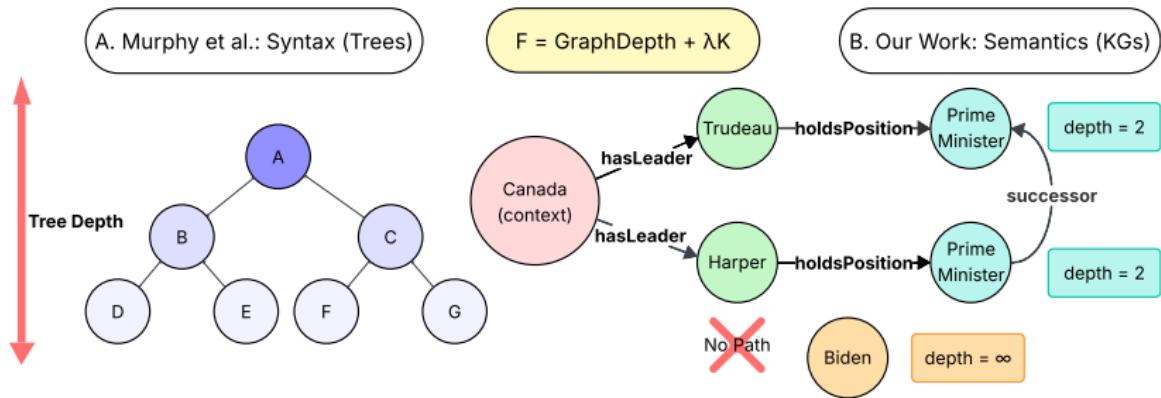
### Results

- ▶ Trudeau: distance = 2 → Low surprise
- ▶ Harper: distance = 2 → Low surprise
- ▶ Biden: distance =  $\infty$  → High surprise

Framework correctly identifies both Canadian PMs as plausible while rejecting the US president!

Cycle between Trudeau  $\leftrightarrow$  Harper handled naturally.

# Example: Canadian Prime Ministers



# Connection to Free Energy Principle

Under FEP, agents minimize:

$$F = -\log P(o, s) - H[Q(s)]$$

## Our framework:

- ▶ KG serves as the agent's **generative model**
- ▶ Shorter distances → higher probability
- ▶  $S_{\text{geo}}$  implements the **surprise term**
- ▶ Compatible with active inference

# Future Work & Positioning

## Honest Positioning

This is **work-in-progress** proposing one research direction.  
Different, perhaps more elegant ideas may emerge!

## Next Steps:

- ▶ Empirical validation on FB15k-237, YAGO
- ▶ Compare to human semantic similarity judgments
- ▶ Integration with existing KG reasoning systems
- ▶ Extension to temporal knowledge graphs
- ▶ Application to GNN depth selection

# Contributions

1. **Novel connection** between FEP from neuroscience and KG reasoning in AI
2. **Extension** of surprise minimization from trees to general graphs with cycles
3. **Theoretical framework** for distance-based reasoning in KG systems
4. **Computational grounding** linking to GNNs and active inference

## References

- [1] K. Friston, "The free-energy principle: a unified brain theory?", *Nat Rev Neurosci*, vol. 11, no. 2, pp. 127–138, Feb. 2010,
- [2] E. Murphy, E. Holmes, and K. Friston, "Natural language syntax complies with the free-energy principle," *Synthese*, vol. 203, no. 5, p. 154, May 2024,
- [3] T. Parr, G. Pezzulo, and K. J. Friston, *Active inference: the free energy principle in mind, brain, and behavior*. MIT Press, 2022.
- [4] T. Kipf, "Semi-supervised classification with graph convolutional networks," arXiv preprint arXiv:1609.02907, 2016.