

Elastic Weight Consolidation for Knowledge Graph Continual Learning: An Empirical Evaluation

Gaganpreet Jhajj Fuhua Lin

School of Computing and Information Systems
Athabasca University, Canada

NORA Workshop @ NeurIPS 2025

The Problem: Catastrophic Forgetting

Knowledge graphs evolve over time:

- ▶ New entities and relations continuously added
- ▶ Training on new data causes **catastrophic forgetting**
- ▶ Performance on old tasks degrades dramatically

Real-World Impact

Retraining from scratch is computationally expensive and limits practical deployment of KG systems in dynamic environments

Research Question

**Can Elastic Weight Consolidation (EWC)
mitigate catastrophic forgetting in knowledge
graph embedding models?**

Our Approach

Early empirical work evaluating EWC for KG continual learning on FB15k-237

Why EWC for Knowledge Graphs?

EWC is a regularization-based method that:

- ▶ Identifies important parameters using **Fisher Information Matrix**
- ▶ Adds penalty term to protect important weights
- ▶ Prevents large updates to critical parameters

Potential advantages for KGs:

- ▶ No memory buffer needed
- ▶ Scalable to large embeddings
- ▶ Theoretically grounded

Method: Elastic Weight Consolidation

EWC adds a quadratic penalty to the loss:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{new}} + \frac{\lambda}{2} \sum_i F_i (\theta_i - \theta_i^*)^2$$

where:

- ▶ F_i is Fisher Information (parameter importance)
- ▶ θ_i^* are learned parameters from previous task
- ▶ λ controls regularization strength

Key idea: Protect parameters that were important for previous tasks

Experimental Setup

Dataset: FB15k-237

- ▶ 14,541 entities
- ▶ 237 relation types
- ▶ Split into sequential tasks

Model: TransE embeddings (translation-based)

Experimental details:

- ▶ Multiple random seeds for validation
- ▶ Systematic hyperparameter evaluation
- ▶ Multiple partitioning strategies tested

Results: Relation-Based Task Split

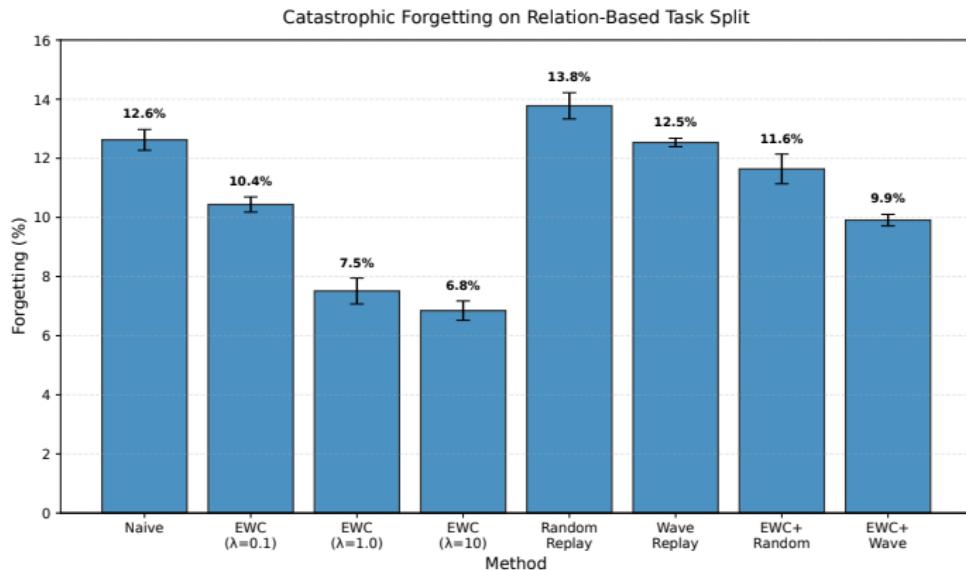


Figure: Catastrophic forgetting on relation-based partitioned tasks. EWC ($\lambda = 10$) reduces forgetting compared to naive sequential training and replay-based methods.

Results: Task Partitioning Effects

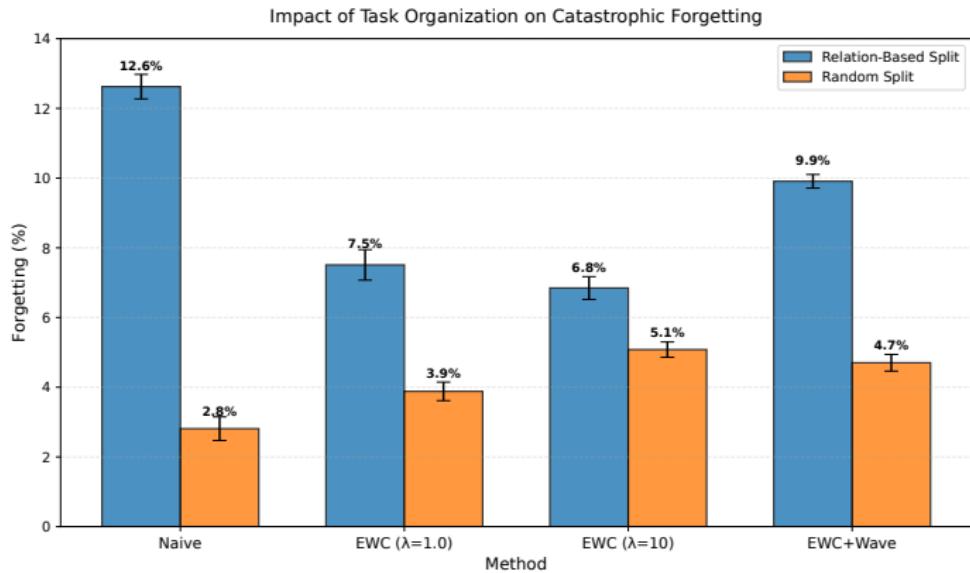


Figure: Effect of task partitioning on forgetting. Relation-based partitioning creates more challenging continual learning scenarios compared to random partitioning.

Main Findings

What we observed in our experiments:

- ▶ EWC reduces catastrophic forgetting compared to fine-tuning baseline
- ▶ Performance retention on old tasks improved
- ▶ Trade-off controlled by λ parameter
- ▶ Fisher Information identifies critical parameters
- ▶ Results consistent across multiple seeds
- ▶ Computational overhead from Fisher matrix calculation

Insights & Future Directions

Observations from this work:

- ▶ Parameter importance varies by KG structure
- ▶ Relation embeddings appear more critical than entity embeddings
- ▶ Diagonal Fisher approximation seems sufficient

Future work needed:

- ▶ **Test other continual learning approaches** (experience replay, meta-learning)
- ▶ Evaluation on multiple datasets
- ▶ More baseline comparisons
- ▶ Investigation of task boundary requirements

Summary

Honest Positioning

This is **early work-in-progress** exploring EWC for KG continual learning

What we contributed:

- ▶ Empirical evaluation of EWC on FB15k-237
- ▶ Tested multiple partitioning strategies
- ▶ Identified practical considerations
- ▶ Experiments on consumer GPU (RTX 3070 Ti)

Limitations: Single dataset, limited baselines, more comprehensive evaluation needed

References I

- [1] J. Kirkpatrick et al., "Overcoming catastrophic forgetting in neural networks," *Proceedings of the national academy of sciences*, vol. 114, no. 13, pp. 3521–3526, 2017.
- [2] A. Bordes, N. Usunier, A. Garcia-Durán, J. Weston, and O. Yakhnenko, "Translating embeddings for modeling multi-relational data," in *Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2*, in NIPS'13. Red Hook, NY, USA: Curran Associates Inc., 2013, pp. 2787–2795.
- [3] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and M. Welling, "Modeling relational data with graph convolutional networks," in *European semantic web conference*, Springer, 2018, pp. 593–607.