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Problem Statement . 2025

Style Transfer + Pose Customization

Style Transfer

Style Transfer
+
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Input Image
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Playing Guitar

We define style transfer with pose customization as the problem of generating an image that preserves the facial
identity of a source image adopts the artistic or photometric style and conforms to a target pose representation.
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Challenges of Style Transfer

Over weightage on styles cause appearance drift

* Style transfer operates in feature-statistic space, notin identity space.
* [tintroduces appearance drift — modifications to color, lighting, or even local geometry.

Solution

* Low-rank adaptation based style transfer.

Why is this effective?

* Control the weight pruning in order
to mitigate the appearance drift.

Input Image Reference Style Final Output
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Challenges of Pose Customization . 2025

Affect face consistency

 For large pose shifts, the generator must hallucinate unseen Input Image | Playing D]

regions (e.g., ear or cheek), which can break identity structure.

 Keypoint-based pose constraints ensure alighment but provide
no supervision on facial texture leading to distorted or identity-
inconsistent renderings.

k
Singing in a mic

Solution

* CLIP-based pose customization (Limits no. of pose)
* Face-consistent self-attention.

Why is this effective?

* Preserve the facial attribute of the character through the extra
dimension of identity embedding.

Playing Guitar

"




Self-Attention

Face Consistent

Subject Driven

Our main contribution

Face-consistent self-attention

Preserve facial features in an identity vector
and transfer it into the latent space through
identity embedding.
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Traditional Self-Attention

Face-Consistent Self-Attention

Tl

Identity Vector
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CraftGraffiti Pipeline Gy e

Simple yet effective
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[It injects graffiti style using a LoRA-tuned diffusion model, then applies a face-consistent self-attention to preserve\

facial features. A pose customization module guided by CLIP prompts enables flexible pose control without
retraining. Finally, multi-scale latent processing in a VAE captures both global structure and fine details, producing
\_high-quality, identity-consistent graffiti portraits. )
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Experimental Analysis & Comparative Study B opoE

Works irrespective of gender bias

Playing DJ Playing Guitar  Singing in a mic

FLUX.1
Kontext

Grok 3

Input Image
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Experimental Analysis & Comparative Study o ohon

Works irrespective of gender bias

Playing D)
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Works irrespective of gender bias

V* is playing DJ V* is playing guitar V* is singing in a mic

As we can generate similar face mesh during different pose customization in graffiti style, Craftgraffiti preserve the
facial features. (Note: this face meshes are extracted after the generation, this step doesn't involve in training)




Quantitative Analysis

Metric and Human Evaluation

Table 1: Quantitative Evaluation of CraftGratfiti

Method/Metric FFCT AesT HPST Inf. Time (sec) |
FLUX + IP-Adapter [56] 0.8324 3.2414 0.3012 8.2
FLUX.1 Kontext |27 0.6741 2.1749 0.2911 6.7
InstructPix2Pix |6] 0.7112 2.7272 0.1918 3.1
GPT4o0 [22] 0.8761 45193 0.3412 13.4

Grok 3 |16] 0.8513 4.1652 0.3102 11.2

Ours (Baseline) 0.7618 3.6913 0.2911 2.9

Ours (+ Style Fusion) 0.6814 4.7195 0.3001 5.3

Ours (+ Face Cﬁonmstent 07713 5.1376 03176 R 7
self attention)
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4 N

VLMs only focus on
face consistency not
on style and pose but

CraftGraffiti attend

every aspects

CraftGraffiti 0.7713 5.2271 0.3536 10.1

\_ /
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Metric and Human Evaluation

InstructPix2Pix InstructPix2Pix
2.7% 3.2%

InstructPix2Pix
7.6%

CraftGraffiti
17.8%

FLUX + IP- FLUX + IP-

CraftGraffiti FLUX + IP-

CraftGraffiti
72.6%

Style Blending Aesthetics Recognizability

CraftGraffiti not only achieve superior performance also address the cultural diversity as the users from 11
different countries participate in human evaluation.

11
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Ablation Studies S

Why each of the components are effective

A photo of V* V* is playing DJ V* is playing guitar V* is singing in a mic

Pose customization w/o style blending and face consistency self attention

12
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Why each of the components are effective

A photo of V* V* is playing DJ V* is playing guitar V* is singing in a mic
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Why each of the components are effective

A photo of V* V* is playing DJ V* is singing in a mic

Style transfer after pose customization with face consistency self-attention
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Why each of the components are effective

A phoTo of V* V* is playing DJ V* is playlng gun'ar V* is singing in a mic
\7 Nk uw:ow; SN AT L o .

Style transfer before pose customlzaﬂon wrrh face consistency self aﬂenﬂon
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Qualitative Analysis

A photo of V*

[Blend perfect style and poseJ
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V* is singing in a mic
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Qualitative Analysis 45005
A photo of V* V* is playing DJ V* is playing guitar V* is singing in a mic

[ Mitigate gender bias J

17



SO
3* " “ NEURAL INFORMATION

Qualitative Analysis T

V* is playing DJ V* is playing guita
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A photo of V*

[ Works irrespective of the background J
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Qualitative Analysis T

A photo of V* V* is playing DJ V* is play
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ing guitar V* is singing in a mic
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Try to maintain hair color as well
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Contribution Bucket Gy e

 Face Consistency during style and pose customization.
* Mitigating gender bias.
* Achieve cultural diversity.

Limitations

* Always generate younger face.
* Put extra make up on women's face.

Future Scope

* Extending CraftGraffiti to handle a broader range of cultural art forms beyond graffiti.
* Integrating real-time bias detection and mitigation pipelines.
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