
• 1 Overview

Why It Matters
- High-quality artistic output can emerge from an art-free core with voluntary, opt-in adapters.
- Gives artists practical control over when and how their styles appear in generations.

• 3 Artistic Style Adapter

 Few-shot LoRA fine-tuning 

on opt-in painting sets (9–50, 

avg. 22).

 Content-preserving training: 

explicitly disentangle content 

and style.

 4.1 Artistic style generation & Image stylization
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 4.2 Adapter strength control

 4.3 Data attribution
Generated Image Top Attributed Images from the Training Sets
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A large modern house with a swimming pool in the backyard.

Blank Canvas
Dataset

 4.4 Baseline Comparison
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• 2 Blank Canvas Diffusion — Art-Free Foundation

• 4 Experiments
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