

Robinson Umeike^{1,*}, Neil Getty², Xiangyu Yin² and Yi Jiang²

¹The University of Alabama, ²Argonne National Laboratory

* Work performed while at Argonne National Laboratory

ABSTRACT SUMMARY

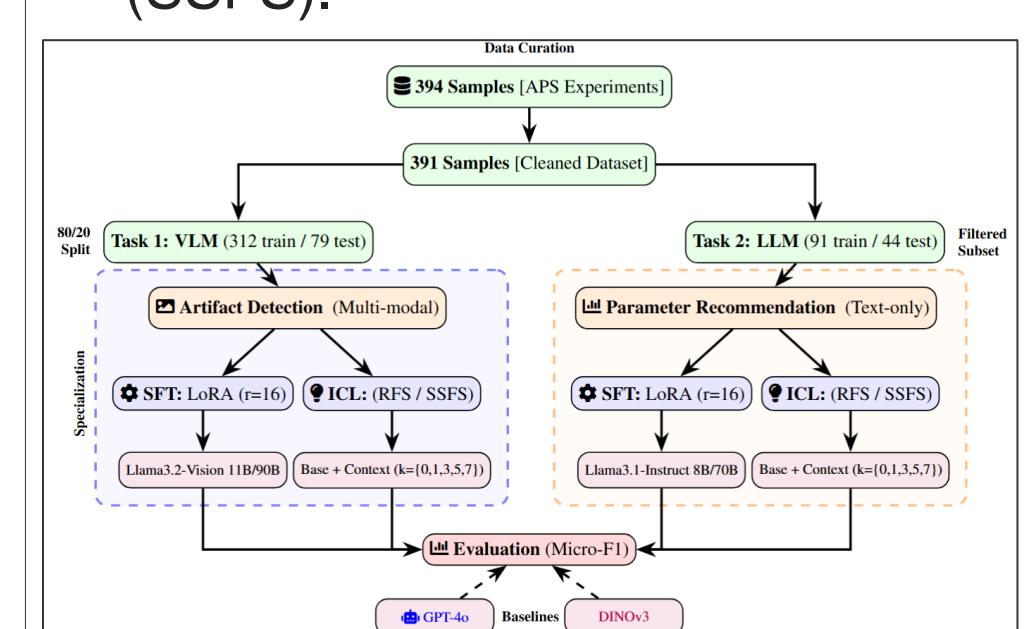
Adapting foundation models for specialized scientific tasks is critical, yet the optimal strategy remains unclear. We introduce **PtychoBench**, a multi-modal benchmark for ptychography, to systematically compare Supervised Fine-Tuning (SFT) versus In-Context Learning (ICL) in a data-scarce regime. Our findings reveal the optimal pathway is task-dependent. For visual tasks (VLMs), SFT and ICL are **complementary**, achieving the highest **mean performance (Micro-F1 0.728)**. Conversely, for textual tasks (LLMs), ICL on a base model is **superior (mean Micro-F1 0.847)**, outperforming a "super-expert" SFT model (**mean Micro-F1 0.839**). Benchmarked against **GPT-4o** and **DINOv3**, our results on this dataset highlight that visual tasks benefit from hybrid specialization, while textual reasoning favors flexible base models in science-based agentic systems.

CONTRIBUTION

- **Novel Benchmark:** 391 expert-annotated samples from the Advanced Photon Source (APS)
- **Dual Tasks:**
 - ✓ **Task 1 (Visual):** Artifact Detection (VQA).
 - ✓ **Task 2 (Textual):** Parameter Recommendation (QA).
- **Data-Scarce Regime:** Limited training data available, mimicking real experimental constraints.

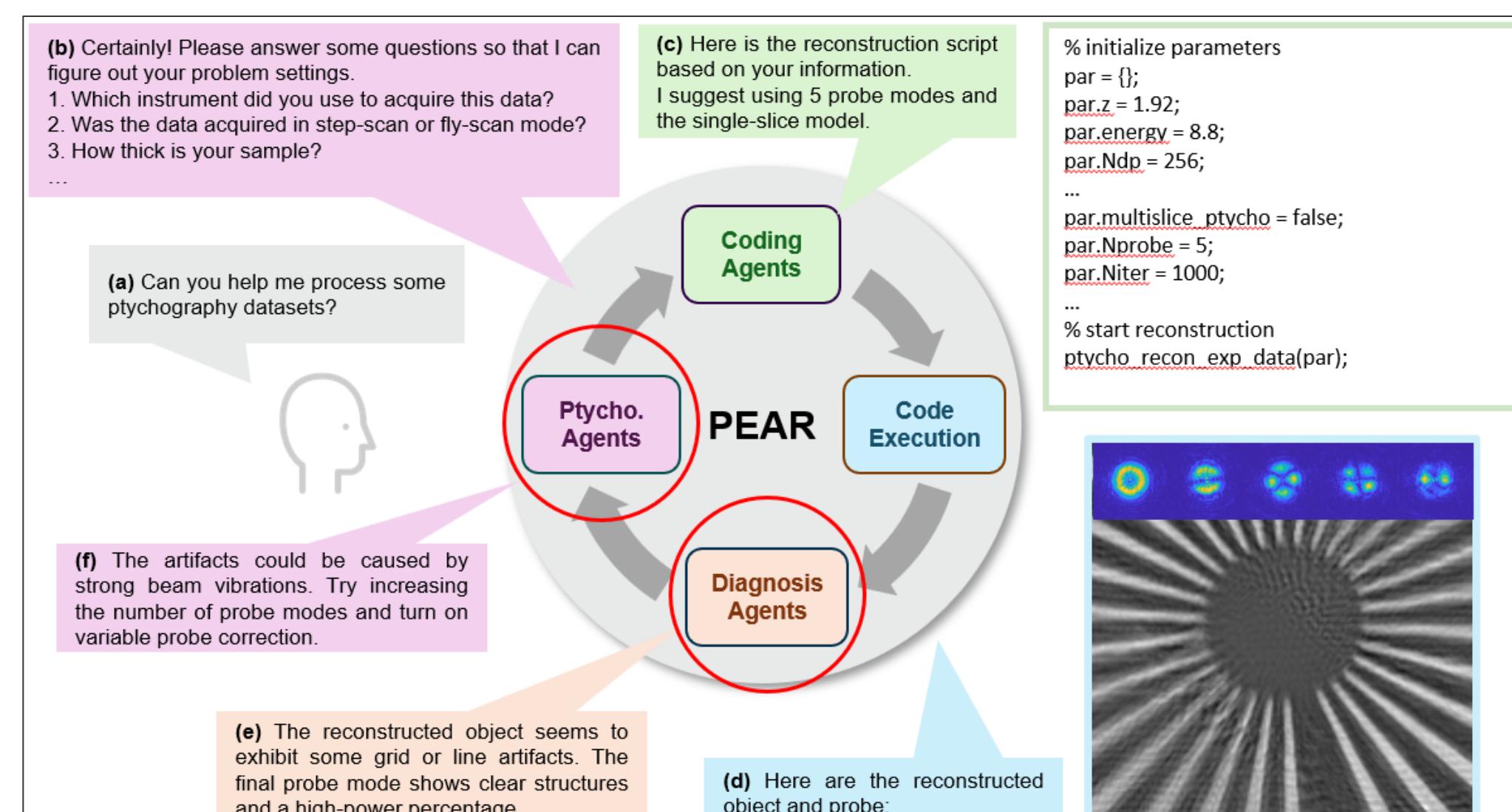
METHODS

- **Models:** Llama 3.2 (11B/90B Vision), Llama 3.1 (8B/70B Text).
- **ICL Strategy:** Compared Random Few-Shot (RFS) vs. Sample-Specific Few-Shot (SSFS).



BACKGROUND & MOTIVATION

- **Context:** X-ray ptychography is a computational imaging technique that achieves high resolution but requires manual parameter tuning.
- **Problem:** General-purpose models struggle with this specialized scientific data, and no standard benchmark exists to evaluate them.
- **Goal:** Automate manual analysis using "Agentic Workflows" (e.g., PEAR), with VLM (Diagnosis) and LLM (Recommendation) agents.
- **Approach:** We systematically compare two adaptation paths: **Supervised Fine-Tuning (SFT)** vs. **In-Context Learning (ICL)**.

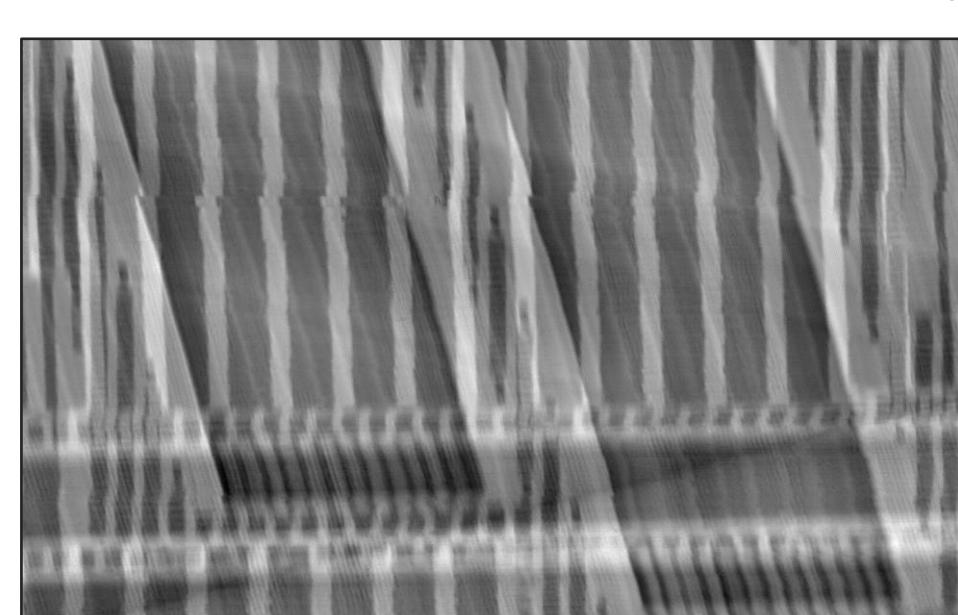


Sample Info:

- ✓ Type: Integrated circuit
- ✓ Artifact: Local Distortion

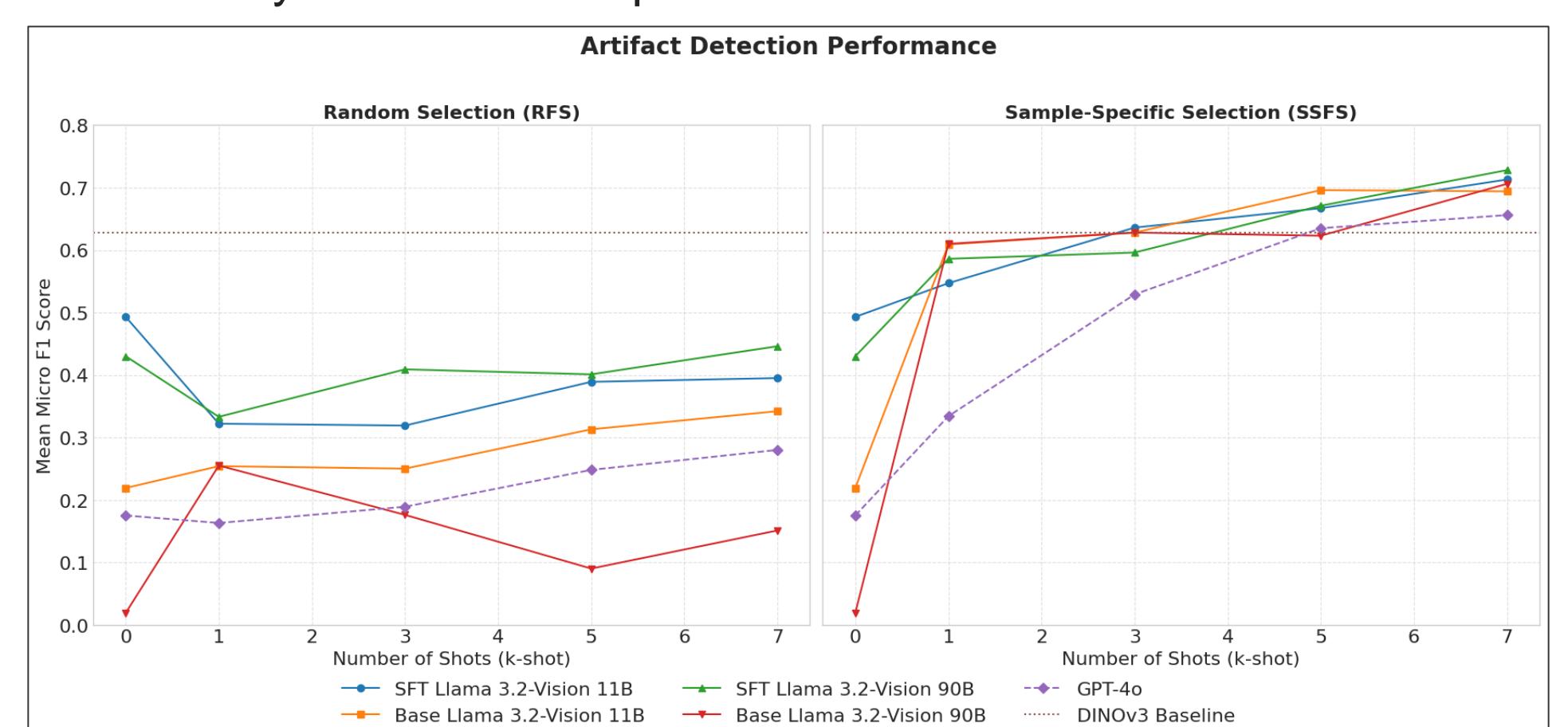
Expert recommendation:

- ✓ Increase the number of iteration.
- ✓ Reduce the size of diffraction patterns by a factor of 2
- ✓ Turn off variable probe correction.

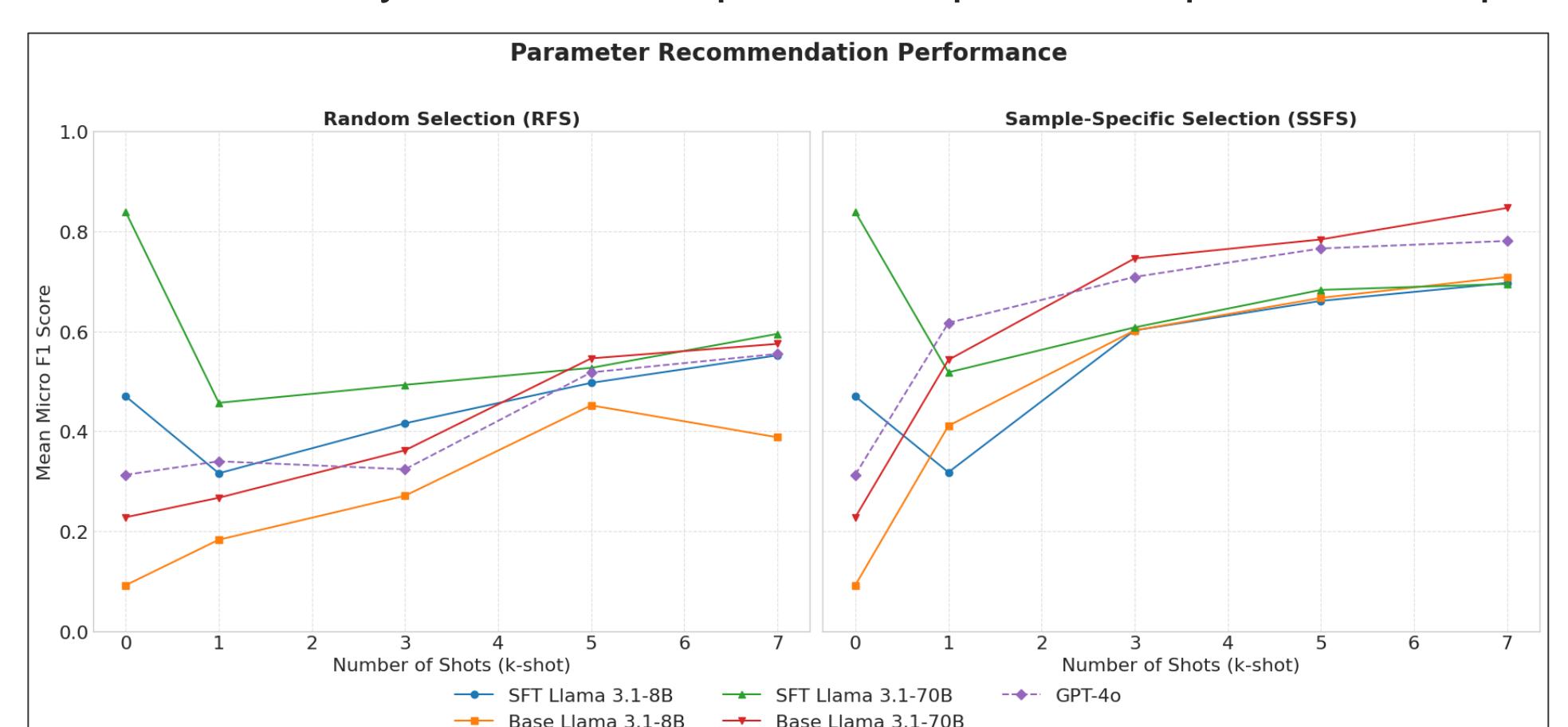


RESULTS

- **Visual diagnosis:** The winning strategy **combines SFT and SSFS (0.728 F1)**. Fine-tuning builds a "visual vocabulary" that context refines, allowing the larger **90B model** to overcome its lower standalone baseline and outperform the smaller expert when unlocked by relevant examples.



- **Textual recommendation:** In contrast, textual recommendation favors a **Base 70B Model with SSFS (0.847 F1)**. While SFT created a "brittle super-expert" that degraded with context, the flexible base model effectively utilized examples to surpass the specialized expert.



DISCUSSION & CONCLUSION

- **Contextual Interference:** We observed a consistent contextual interference phenomenon across fine-tuned models. While relevant context boosts scores, **random examples actively confuse the expert models**, causing performance to plummet below the zero-shot baseline (e.g., a 35% drop for SFT-11B), highlighting that retrieval quality is a critical safety constraint.
- **Data Efficiency:** Our results also highlight remarkable data efficiency. The Base-90B model, using **only 7 inference-time examples**, achieved a **mean F1 score (0.706)** statistically comparable to a **DINOv3** vision classifier trained on the entire dataset (**0.628**). This proves that guided foundation models can match traditional supervised learning with a fraction of the data.
- **Conclusion:** Our dataset reveals no one-size-fits-all strategy. Visual tasks (**artifact detection**) benefit from SFT priming, whereas textual tasks (**parameter recommendation**) require the flexibility of base models.

Acknowledgement: This work was supported by the Laboratory Directed Research and Development (LDRD) Program at Argonne National Laboratory under Project Number 2025-0495. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

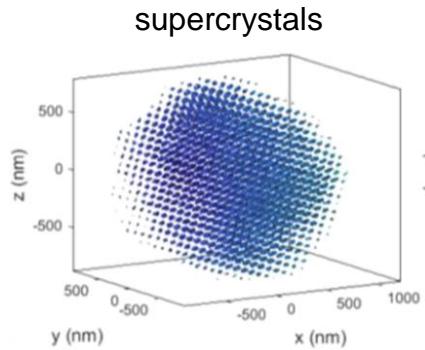
REFERENCES

- X. Yin, C. Shi, Y. Han, and Y. Jiang, (2024) *PEAR: A Robust and Flexible Automation Framework for Ptychography Enabled by Multiple Large Language Model Agents*.
- R. Umeike, N. Getty, F. Xia, and R. Stevens, (2025) *Scaling Large Vision-Language Models for Enhanced Multimodal Comprehension in Biomedical Image Analysis*. In 2025 IEEE 22nd International Symposium on Biomedical Imaging (ISBI), pp. 1--4.

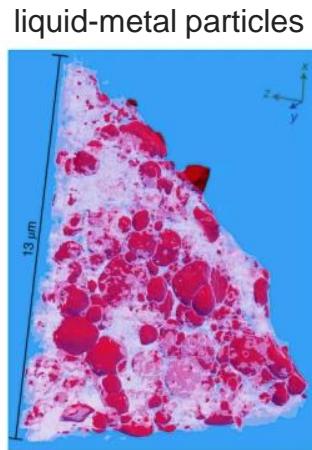
Have Questions? Please contact:

- ✓ ngetty@anl.gov (Code)
- ✓ yjiang@anl.gov (Dataset)
- ✓ [Scan for Code & Data Access Guidelines](#) ➔

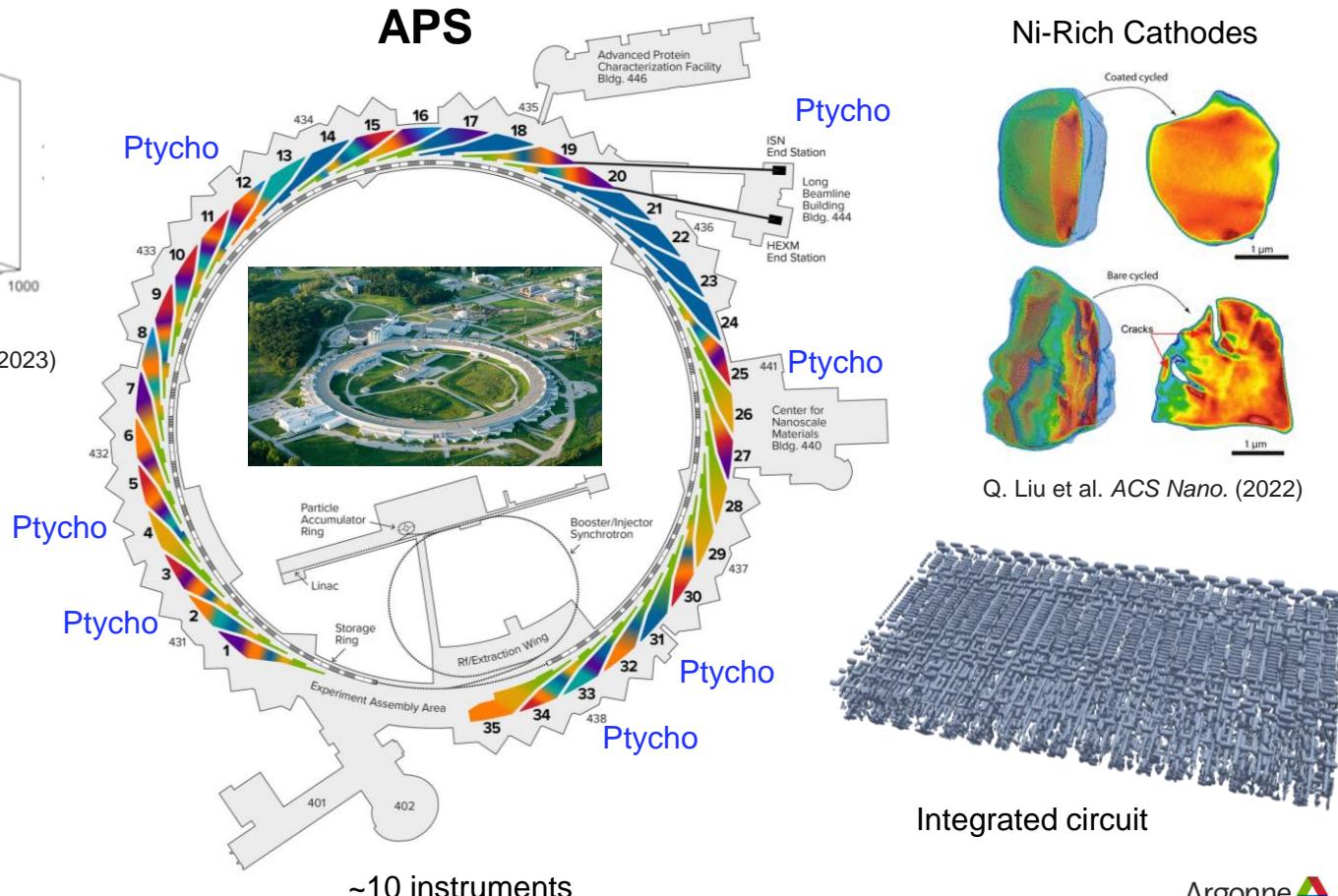
Transmission X-ray Ptychography @ APS



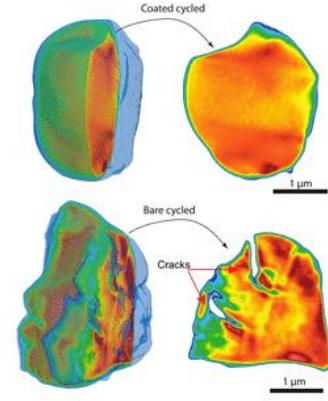
H. Calcaterra et al. *ACS Nano.* (2023)



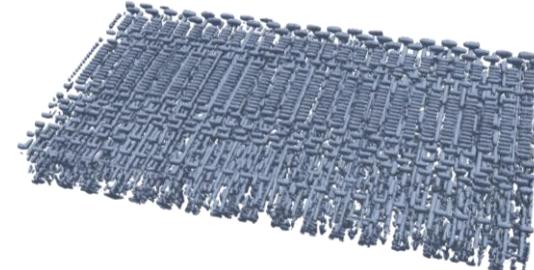
Y. Lin et al. *Nat. Chem.* (2022)



Ni-Rich Cathodes



Q. Liu et al. *ACS Nano.* (2022)



Integrated circuit