

L³Seg: Lean Linear Layers for Language-Guided Vision Transformer in Medical Image Segmentation

Rahul Bhardwaj¹, Utkarsh Yashwant Tambe², Debanga Raj Neog¹

¹Mehta Family School of Data Science & Artificial Intelligence, Indian Institute of Technology Guwahati, India
²Department of Data Science & Business Systems, SRM Institute of Science & Technology, Kattankulathur, India

Introduction

Problem Statement:

- Vision-Language models are heavy (params, FLOPs).
- Need cross-modality generalization.

Motivation:

- Compute is concentrated in dense linear projections.
- Fine-tuning/PEFT change few weights while base matrix multiplications still run, keeping compute high and adaptation limited.

Key Contributions:

- Replace all dense projections with L³
- Trainables: $O(d_{in}d_{out}) \rightarrow O(r(d_{in} + d_{out}))$

Algorithm 1 Lean Linear Layer (L³)

```

1: Input:  $x \in \mathbb{R}^{B \times N \times d_{in}}$ 
2: Frozen base:  $W_0 \in \mathbb{R}^{d_{out} \times d_{in}}$ ,  $b_0 \in \mathbb{R}^{d_{out}}$ 
3:  $B$ : batch size,  $N$ : number of tokens,  $d$ : feature dimension
4: class LEANLINEARLAYER(Module):
5:   def __init__(self,  $d_{in}$ ,  $d_{out}$ ,  $r$ ,  $W_0$ ,  $b_0$ ):
6:     super().__init__()
7:     self.W0  $\leftarrow W_0$  [dout, din], frozen
8:     self.b0  $\leftarrow b_0$  [dout], frozen
9:   # trainable low-rank factors
10:  Notation:  $\mathcal{N}(0, 10^{-3})_{m \times n} = \text{randn}(m, n) \times 10^{-3}$ 
11:  Notation:  $\mathbf{0}_{m \times n} = \text{zeros}(m, n)$ 
12:  self.Ag  $\leftarrow \mathcal{N}(0, 10^{-3})^{d_{in} \times r}$ 
13:  self.Bg  $\leftarrow \mathbf{0}_{r \times d_{out}}$ 
14:  self.Ab  $\leftarrow \mathcal{N}(0, 10^{-3})^{d_{in} \times r}$ 
15:  self.Bb  $\leftarrow \mathbf{0}_{r \times d_{out}}$ 
16: def forward(self, x):
17:   # 1. frozen baseline
18:   yo  $\leftarrow xW_0^\top + b_0$  [B, N, dout]
19:   # 2. low-rank scale and shift
20:    $\gamma \leftarrow (xA_g)B_g$ 
21:    $\beta \leftarrow (xA_b)B_b$ 
22:   # 3. scaled-offset fusion
23:   return  $(1 + \gamma) \odot yo + \beta$ 

```

Method

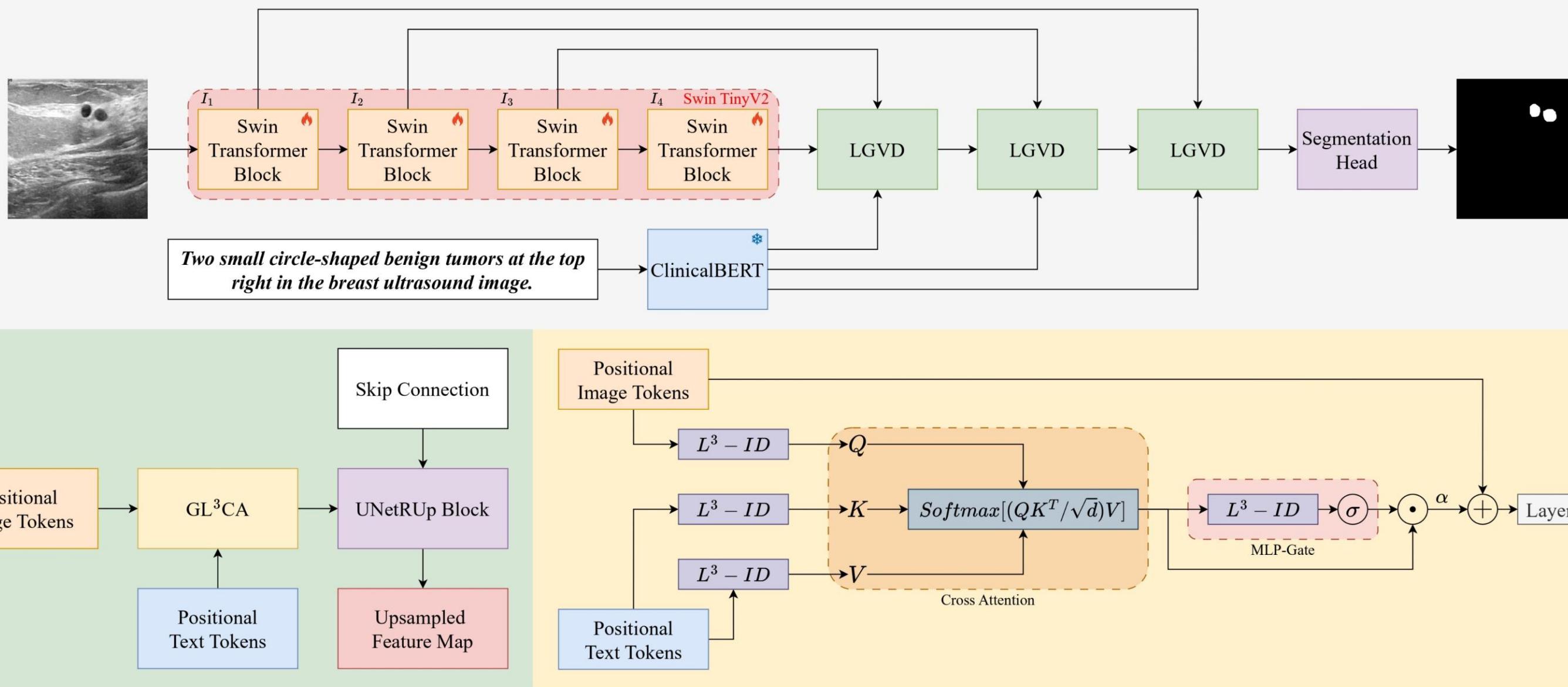


Fig. 1. Overview of L³Seg: Language-Guided Vision Decoder fuses image and text using Gated L³ Cross-Attention

Comparative Analysis

Table 1. Quantitative Comparison on QaTa-COV19 (X-ray), Kvasir-SEG (endoscopy) and BUSI (ultrasound) dataset. CNN-based (◊), SAM-based (¶), and hybrid CNN-Transformer (†).

Method	Venue	Text	Params (M) ↓	FLOPs (G) ↓	QaTa-COV19 (XRay)		Kvasir-SEG (Endoscopy)		BUSI (Ultrasound)	
					Dice(%) ↑	mIoU(%) ↑	Dice(%) ↑	mIoU(%) ↑	Dice(%) ↑	mIoU(%) ↑
UNet [◊] [21]	MICCAI'15	✗	14.8	50.3	79.02	69.46	81.83	74.60	57.28	49.19
UNet++ [◊] [27]	IEEE TMI'19	✗	74.5	94.6	79.62	70.25	82.10	74.43	63.46	56.59
Swin-UNet [†] [3]	ECCV'22	✗	82.3	67.3	78.07	68.34	85.90	77.56	63.67	55.54
H2Former [†] [9]	IEEE TMI'23	✗	33.7	24.6	77.86	68.35	80.03	72.23	63.72	56.71
SAM [¶] [13]	ICCV'23	✗	93.6	50.9	71.85	56.06	77.83	70.72	49.93	33.27
SAM-Adapter [†] [4]	ICCV'23	✗	104.3	55.2	84.76	73.55	83.42	71.55	77.47	63.22
CLIPSeg [†] [17]	CVPR'22	✓	150.0	23.0	78.92	71.55	83.71	76.02	62.06	57.91
TGANet [◊] [22]	MICCAI'22	✓	19.8	41.9	79.87	70.75	89.51	82.49	69.33	62.32
Ariadne's Thread [†] [26]	MICCAI'23	✓	44.0	22.4	89.78	81.45	87.61	77.95	79.36	65.78
LVIT [†] [14]	IEEE TMI'23	✓	29.7	54.1	83.66	75.11	88.62	81.90	65.51	58.73
RecLMIS [†] [11]	IEEE TMI'24	✓	23.7	24.1	85.22	77.00	85.78	78.76	63.66	55.96
SGSeg [†] [24]	MICCAI'24	✓	76.9	19.3	87.41	77.85	86.99	77.27	68.39	63.68
VLSM-Adapter [†] [7]	MICCAI'24	✓	136.9	38.3	79.98	76.69	82.34	74.91	65.02	57.20
L ³ Seg (Ours) [†]	ICCV'25	✓	8.2	5.1	90.98	83.46	90.10	82.67	85.53	74.72

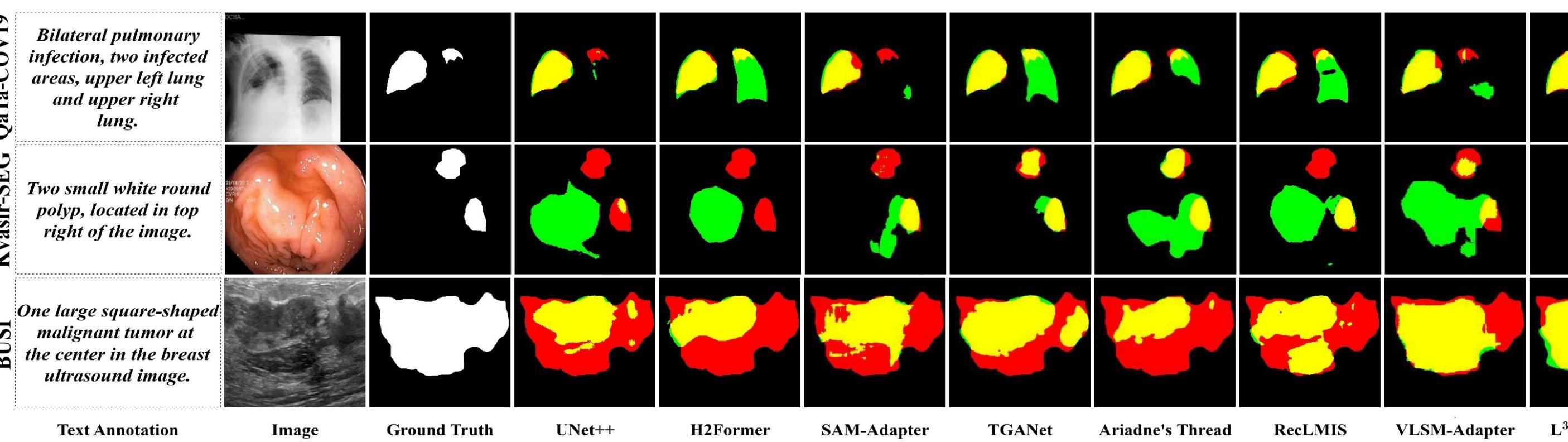


Fig. 2. Qualitative Comparison on QaTa-COV19, Kvasir-SEG and BUSI dataset. (TP, FN, FP)

Experimental Results

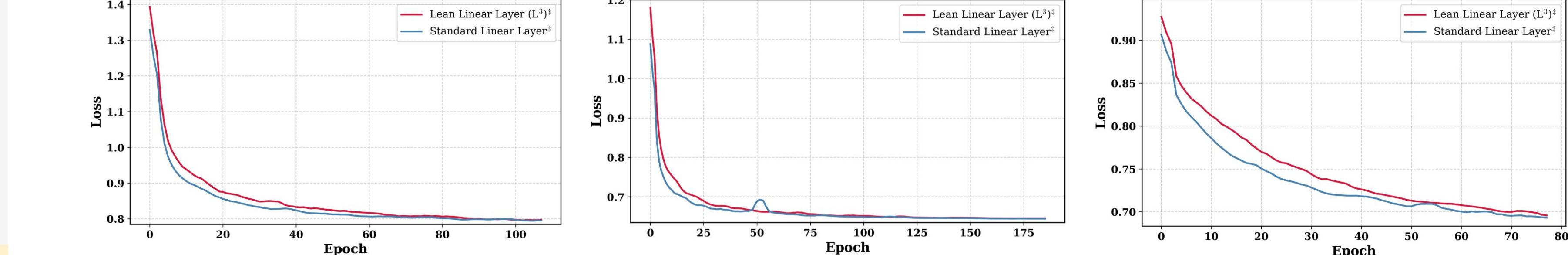


Fig. 3. Training loss curves for both the Standard Linear Layer and the Lean Linear Layer (L³).

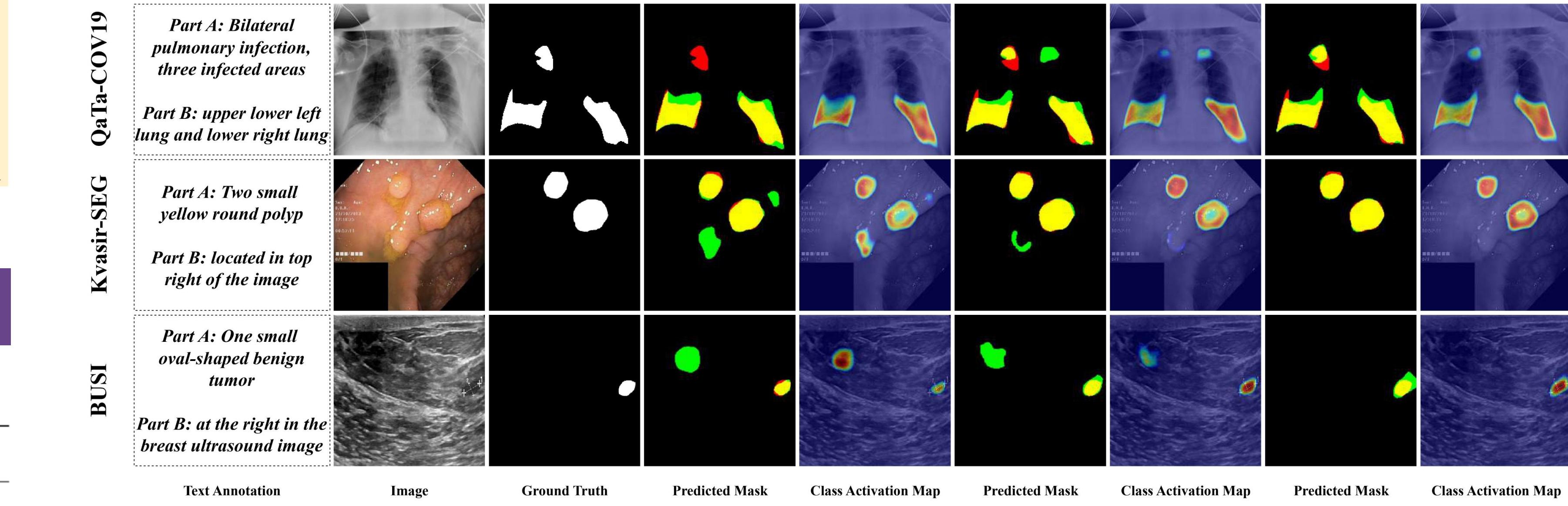


Fig. 4. Segmentation Visualizations with Varying Text Inputs. (TP, FN, FP)

Table 2. Impact of Training Data Size.

Data Usage	QaTa-COV19		Kvasir-SEG		BUSI	
	Dice(%) ↑	mIoU(%) ↑	Dice(%) ↑	mIoU(%) ↑	Dice(%) ↑	mIoU(%) ↑
SAM-Adapter [4] (100% Training)	84.76	73.55	83.42	71.55	77.47	63.22
VLSM-Adapter [7] (100% Training)	79.98	76.69	82.34	74.91	65.02	57.20
L ³ Seg (25% Training)	86.15	77.43	83.06	72.50	77.29	62.98
L ³ Seg (50% Training)	87.10	80.98	84.99	73.90	82.05	69.57
L ³ Seg (75% Training)	89.59	81.80	87.96	78.50	83.61	71.83
L³Seg (100% Training)	90.98	83.46	90.10	82.67	85.53	74.72

At a Glance

- Also accepted at ICCV 2025 CVAMD Workshop.
- For more information, please visit project webpage.

