. A Primitive for Reconciling
with Owner Control
in Al Model Distribution

L PRINCETON greilrwuciect:gr?tgniversity
UNIVERSITY https://www.zerui-cheng.com/

https://arxiv.orq/pdf/2411.03887

1/85

https://www.zerui-cheng.com/
https://arxiv.org/pdf/2411.03887

OML: A Primitive for Reconciling Open Access
with Owner Control in AI Model Distribution

Zerui Cheng', Edoardo Contente?, Ben Finch?, Oleg Golev?, Jonathan Hayase®,
Andrew Miller?, Niusha Moshrefi!, Anshul Nasery’, Sandeep Nailwal?,
Sewoong Oh?, Himanshu Tyagi?, Pramod Viswanath'~

! Princeton University

2 Sentient Foundation

3 University of Washington

‘ University of Illinois Urbana-Champaign

Sep 2024 Initial release as the research whitepaper for the Crypto-Al startup Sentient

Apr 2025: Poster presentation in Citadel Securities PhD Summit 2025 (Miami)

May 2025: 1-hour talk at Princeton University ECE research seminar

Jun 2025: Invited online talk at University of Tubingen hosted by Prof. Matthias Bethge

Sep 2025: Accepted to NeurlPS 2025 Lock-LLM: Prevent Unauthorized Knowledge Use from LLMs

2/85

1. Motivation

3/85

Status Quo of Model Serving Today

e Most LLM inference service today is offered via APL.
e Have you ever worried about the following?

o Data and privacy leakage;
o Autocratic management over accounts;

o Performance downgrade or Malicious manipulation on generated responses;

429
You are being rate
limited.

Threat Actor Allegedly claims Sale of 20 million Accounts

4 /85

GPT: Involuntary Service Downgrade

Summarize your tool in a markdown table with availability

Here’s a quick overview of the tools | have available:

Tool

python

web

automations

guardian_tool

canmore

python_user_visible

user_info

bio

image_gen

Purpose

Private code execution for internal reasoning (analysis)

Internet search, page opening, image queries

Scheduling reminders, recurring checks, and notifications

Policy lookup for U.S. election-voting content

Create/update canvas documents (text or code)

Run code and display outputs (plots, tables) to you

Retrieve your location and local time

Persist personal or preference info across sessions

Generate or edit images from descriptions

Availability

Available

Available

Available

Available

Available

Available

Available

Available

Available

summarize your tool in a markdown table with availability

Here's a summary of the tools | can use, formatted as a markdown table:

Tool Description Availability

bio Allows me to store and recall information across conversations. Available

Let me know if you'd like more details on any of the tools!

5/85

Status Quo of Model Serving Today

Al development largely centralized by powerful entities, and dominance by
few corporations limits innovation and fairness.

Jevons’ Paradox: Increased Al efficiency boosts demand, further
concentrating power and exacerbating monopolization.

X Price

$100 -

$50

Costs fall : :
by half Quantity Demanded
: i more than doubles

]
1 1
(0] 10 21 Quantity

JEVONS PARADO

6/85

Motivation: Status Quo of Model Serving Today

e Two prevailing paradigms in Al service landscape today:
e Closed-source APl-access(e.g., OpenAl GPT):
o Monetizable, secure, but lacks transparency and encourages monopolization

m unfair to model users

What can | help with?

e Open-weight (e.g., HuggingFace):
o Transparent, customizable, but lacks monetization and safety mechanisms

m unfair to model owners : /L1ama-3.1-8B-Instructh (Ve ol et e

[Text Generation # Transformers & Safetensors (O PyTorch @ 8languages llama facebook meta

Model card Files and versions Community

7185

Question

e Big techs: “Training and hosting models is extremely costly, and we need to make profit!”

Is there a way to achieve monetizability and openness at the same time?

8/85

Research Question

e Can Al model serving be open, monetizable and loyal at the same time?

OML = Open + Monetizable + Loyal

Loyal{OpenAl)

Open = Immutability guarantee, Ability of end
users to execute locally and fine-tune, etc.

Monetizable = Any usage of model is
enforced to go through the model creator, so
that creators can monetize the model

Loyal = Pre-hoc authorization for any model
usage (i.e. without authorization, it's
impossible to get a desired result) for
concerns on safety and control

9/85

2. The OML Primitive: Formal Definition

10/85

Formulation: Properties of OML

e O: Open-access Distribution

Open means “open-access” instead of “open-weight”

A specially-formatted (OMLized) model is open and accessible to everyone
Open-access guarantees unforgeability, immutability and trust

Users are able to run inference on their local machine

Privacy protection and service quality guaranteed by openness

11/85

O

Formulation: Properties of OML

e M: Granular Monetizability (per input/token)

Open-weight distribution enables model-level monetization: once
authorized, users can download the full model weights and perform
unlimited inference or fine-tuning.

Granular Monetizability means per-input/token monetization, offering
practical, fine-grained billing that aligns with typical retail usage.

12 /85

Formulation: Properties of OML

e L:Loyalty and Control

Monetization can be enforced post-hoc, but it isn't desirable for high-value
models and may lead to Al safety/alignment concerns.

Loyalty and control means that the model owner has a certain form of
“Proof-of-Ownership” which can be used to authorize usage pre-hoc and
prove their ownership of the model.

With loyalty, controlling can also be enforced for Al safety/alignment.
Loyalty doesn’t mean arbitrary manipulation/denial of service, as smart

contracts can enforce transparency and auditability of authorization protocol.

13/85

Formulation: Properties of OML

e Why pre-hoc control is important?

For high-stake or high-risk scenarios, harm cannot be monetized.

The model owner/the entire humanity cannot afford to let a single
harmful response be generated.

14/ 85

|dealistic OML Workflow

s(x)

> M.oml

s(x)#s(x)

Plain-text Model [[M.oml(s'(x)) — y|| is large

Formulation: OML Design Space

Table 1: Notation and Core Components of the OML Framework

Symbol Description

M: XY Original model mapping inputs to outputs

Momi OML-formatted model with embedded authorization
h:X—>H Input-binding transform (e.g., cryptographic commitment)
0:H*xKown—P Permission token generator

Kown Owner’s secret key; vkown denotes optional public verifier
px = o(h(x),kown) Permission token cryptographically bound to input x
d(-,-) Task-appropriate distance or divergence metric

€ utility Maximum fidelity loss on authorized queries

Cibiis Minimum degradation on unauthorized queries

Eovachinait Relative computational overhead bound

Definition 1 (OMLized Model). Given an original model M : A —), an OMLization process
OMLize(M; h, o, params) — M,

produces a locally executable artifact that operates on input-token pairs (x, p). For each input x € &,
authorization requires a valid token p, = o(h(x), kown) computed with owner’s secret key kown €
Kown. Informally, M,,,; behaves as M on authorized inputs and degrades otherwise.

16 /85

Formulation: OML Design Space

1. Authorization: Users submit hi(x) to owner I1p; if approved, they receive p, and query (x, px).

2. Fidelity: d(M,;(x, px), M(x)) < €ygiity, ensuring preservance of the model’s core capabilities.
3. Protection: For invalid p, d(Momi(x, p), M(x)) > €robust With €robust > Eutility-
4. Overhead: T(M,,;, (X, px)) < (1 + €gverhead) T(M, X), preserving practical deployability.

Algorithm 1 OMLIZE: Transforming Models into Controlled Artifacts

: Input: Original model M, binding function h, token scheme ¢, public parameters
: Output: Controlled artifact M,
: Step 1: Embed verifier a : X xP — {0, 1} that validates tokens against input commitments
: Step 2: Entangle a within M’s critical paths to construct F such that:
(i) Valid authorization: a(x, px) =1 = F(x, px) =~ M(x)
(ii) Invalid tokens: a(x, p) # 1 = F(x, p) vields degraded /noisy output
Step 3: Optionally expose vk, for public verification capability
return M, (x, p) = F(x, p)

= W N

0

&

17 /85

Attack Vectors by Malicious Users

What does an attacker have access to?

o White-box access to the OML-formatted model M.oml

o (x, s(x)) pairs for different inputs x by honest queries at cost set by model owner

18 /85

Attack Vectors by Malicious Users

e How can an attacker restore the model?

Removal: Bypassing verification by removing it from the OMLized model;
Modification: Tampering with verification result within the OMLized model;

Counterfeiting: Figure out the function s(x) and ownership key k, or generate
a function s'(x) such that M.oml(s'(x)) is close to M.oml(s(x)).

19 /85

Adversary Model: Formal Definition

Adversary Model. We model adversaries as probabilistic polynomial-time (PPT) algorithms A
with

¢ Complete white-box access to M,,,;, including all parameters and computation graphs

* Oracle access to an authorization service I'lp for up to N queries

¢ The resulting knowledge base Dy,,p0n = {(Xi, Px,, Vi) ;‘i] where y; = M, (xi, px,)

20 /85

Security Goal: Formal Definition

Security Goal. Against such adversaries, two fundamental hardness properties should hold:

Requirement 2.1 (Model Extraction Resistance). In experiment Expt’{*:

(1) A receives M,,,; and oracle access to Pp for N queries; (2) A outputs a stand-alone model M’;

(3) a fresh x* ~ Dy is drawn with x* ¢ {x;}; (4) A wins if d(M'(x*), M(x*)) < €,1ity-

The scheme is (f, N, €pmg)-extraction-resistant if every PPT A running in time ¢ wins with proba-
bility at most epe(f, N). Informally, any adversary cannot replicate a functionally equivalent model
that bypasses authorization within reasonable cost.

Requirement 2.2 (Permission Forgery Resistance). In experiment Expt':f -
(1) A receives M,,,; and oracle access to Py for N queries;

(2) a fresh x* ~ Dy is revealed with x* & {x;};

(3) A outputs p'; 4) A wins if d(Moml(x'/ P')’ M(I')) < €utility-

The scheme is (, N, epg)-forgery-resistant if every PPT A running in time ¢ wins with probability
at most €pp(f, N). Informally, adversaries cannot generate valid tokens for unauthorized inputs.

21 /85

Failure of Naive Construction

The Failure of Naive Approaches. To illustrate why sophisticated entanglement is necessary, con-
sider a naive wrapper design with a cryptographic digital signature scheme:

M(x) if Verify , (h(x), p) = true
i § otherwise

Momi(x,p) = {

With white-box access, an attacker can trivially locate the conditional branch, remove the veri-

fication check, and recover the original model M. This vulnerability motivates our requirement for

deep computational entanglement, i.e. the verifier must be so thoroughly integrated that removing
it is tantamount to destroying the model’s learned representations.

22 /85

TL, DR: The Essence of OML Primitive

For a general machine learning model M, separate it into two parts.

Use a very small portion of “critical compute” to secure large stakes (the model weights and
any inference result from the model). The “critical compute” is held by the model owner for
control and authorization, while the rest but bulky workload can be made public to any model
users to ensure data privacy, immutability, etc. —-> and Control at the same time

If realized, the small portion of "critical compute" can be not necessarily held by the owner in
realization - When it is small enough, it can be in the form of a smart contract, some kind of
multi-party computation, etc. so that the result from this part is robust enough to any single
point failure or malicious manipulation.

The permission generation scheme is the “critical compute” here.
The “critical compute” should be robust against sophisticated attackers with white-box access.

23 /85

Theoretic Foundation of OML Primitive

A natural question arises: How hard is it to achieve OML?

24 /85

Theoretic Result 1: A pessimistic view

First, if an adversary controls the artifact and can issue unbounded authorized queries, information alone
suffices to reconstruct the task mapping, and perfect protection is therefore unattainable.

Theorem 1 (Information-theoretic impossibility). No OML scheme achieves perfect security against
unbounded adversaries with unlimited oracle access.

25 /85

Theoretic Result 2: An optimistic view

Second, under strong program hiding, authorization can be made computationally inseparable from
high-utility computation, yielding the idealized OML instantiation.

Theorem 2 (OML from indistinguishability obfuscation). If indistinguishability obfuscation (iO) ex-
ists for the model class, then there is an OML construction satisfying extraction and forgery resistance
(assuming unforgeability of o).

26 /85

Theoretic Result 3: Learning theory perspective

Third, authorized answers facilitate extraction. Learning theory converts model complexity
and accuracy tolerance into a concrete cap on such answers.

Theorem 3 (Query-security trade-off). Let H C [0, 1] have pseudo-dimension d and assume M € H

(realizable). If an adversary receives N i.i.d. authorized pairs and returns an ERM under squared loss,
then there exist constants C, ¢ > 0 such that

N >

Cd+lot<§(l/d)

3 = Pr[E(h(x) - M(x))? <¢] >1-4,

and any OML deployment targeting (¢, &) extraction resistance must enforce N < ¢ d+log(1/9)

e- "

27 /85

Implications from Theoretic Results

e Absolute guarantees are unattainable,
so OML must rely on computational hardness and economics;

e Verifier entanglement with cryptographic binding
is the appropriate abstraction for practical surrogates of iO;

e Policies by model owners (token issuance, batching, collateral) must
enforce query budgets consistent with the learned trade-off above.

28 /85

3. Methodology: Road to OML

29 /85

Solution Sketch: Path to OML

e Construction-based solutions
Use cryptography-based solutions for ownership key k and permission s(x);
Provably secure against counterfeiting attempts;
May be vulnerable to removal or modification.
e Al-native solutions
Train/Fine-tune an Al model with the desired OML properties.
Low interpretability of neural networks naturally defends against removal or modification;

Discrete s(x) is untrainable, and continuous s(x) is vulnerable to counterfeiting.

30/85

3.1 Construction-based OML Solutions

31/85

Starfing Point :

A Naive OML Construction - Does I

2

Plain-text Model

Auth. Protocol

FWork?

|

Naive Model

32 /85

Starfing Point :
Why the Naive OML Construction Fails

o Auth. Protocol
Plain-text Model Naive Model

Model is open-access to the public »
Easy to investigate and remove verification layer -»

How to merge them into a single entity with as little interpretability as possible?
33/85

3.1.1 Fixing the Naive Idea - Obfuscation

34 /85

Canonical OML Constructions - Obfuscation

Software Obfuscation
Security level: Software security (“Security-by-Obscurity")

Employs software obfuscation methods to transform the Al model into a
functionally equivalent but intricate form (e.g. a binary file which carries out the
same functionality as inference), making it difficult for attackers to
reverse-engineer or remove authorization checks without extensive effort.

35/85

Software Obfuscation Solution to OML

Auth. Protocol Auth. Protocol

$_’|$_’

Plain-text Model Naive Model Obfuscated Model

Permission scheme: s(x) is the cryptographic digital signature
Key: the secret key sk of the cryptographic digital signature scheme
OMLization: A blend of software obfuscations techniques

36 /85

Program Obfuscation

Program obfuscator is a compiler that makes P -> P*
Goals:

1. P* has the same functionality as P;

2. P* hides “secrets” of P.

P = factorize()

XOpenDisplay(0); z=RootWindow(e,0); for (XSetForeground(e,k=XCreateGC
(e,z,0,0),BlackPixel(e,0));

P* - scanf("%If%If%If",y +n,w+y, y+s)+1; y ++);

XSelectInput(e,z= XCreateSimpleWindow(e,z,0,0,400,400, 0,0,WhitePixel(e,0)
),KeyPressMask); for(XMapWindow(e,z); ; T=sin(0)){ struct timeval

37 /85

Software Obfuscation

Al-native Obfuscation and Entanglement

o e.g. verification result as a switch in the model
o change of RelLU activation: max(x,0) -> max(x,1) when verification fails

Neural Network Model obfuscation

o e.g.renaming, parameter encapsulation, neural structure obfuscation,
shortcut injection, etc.

Code Obfuscation (obfuscate the code that carries out inference over model M’)

o Lexical obfuscation, Control-flow obfuscation, Code morphing, etc.

Compilation and Binary Obfuscation

o Highly-optimized or paralleled compilation against reverse engineering 8 /85

Software Obfuscation: Algorithm

Algorithm 2 OMLI1ZE-OBFUSCATE(M; h, ¢, params)

1:
2:

wn

Input: model M, binding h, token scheme ¢, compiler/obf params

Verifier injection: Synthesize a(x, p); weave gates into critical paths (e.g., attention/key /value
mixing, residual scalars).

Utility shaping: Construct F so that a(x, p,)=1 = F(x, p,) = M(x); else F diverts to low-utility
basins (e.g., masked subspaces, biased heads).

Hardening: Apply graph randomization (permute blocks), control-flow flattening, dead-code
sprinkling, and constant blinding on verifier features.

Build: Compile with aggressive inlining; invoke multi-pass obfuscation/toolchain hardening.

6: Publish: Mymi(x, p) =F(x, p), optional vkgwn.

39 /85

Software Obfuscation - Weaknesses

e Software obfuscation only raises the bar of reverse engineering - not a silver bullet

e “Security-by-obscurity” is dangerous for high-stake or high-value models

e Low interpretability, flexibility, transplantability, mutability

40 /85

3.1.2 Fixing the Naive Idea - TEE

41 /85

Canonical OML Constructions - TEE

Trusted Execution Environments (TEEs)

Security level: Hardware security (Require Trust of Hardware Vendors)

Utilizes hardware-based secure enclaves that execute encrypted models,
ensuring that all operations and data in the authorization and inference process
remain inaccessible and tamper-proof even from privileged administrators.

42 /85

Trusted Execution Environment

A Trusted Execution Environments (TEEs) is a protected region within a main
processor that ensures code and data inside it are shielded from outside
interference in terms of both confidentiality and integrity (e.g. Intel SGX)

Hardware isolation

Secure OS or runtime

Hardware root of trust for TEE authenticity

Remote attestation of genuine, unaltered code/program execution

43 /85

TEE - Hardware Solution to OML

Auth. Protocol
TEE
¢ (o E2
Model with Encrypted Model Model and Client
Verification and Verification Client Running Unencrypted
Client (for distribution) in TEE

Permission string: s(x) is the secret key acquired within TEE
Key: the secret key sk of the cryptographic encryption scheme
OMLization: Encryption of every weight of the entire model

44 /85

TEE - Algorithm

Algorithm 3 OMLIZE-TEE(M; h, o, params)

1:
2:

w0

Input: model M, binding h, token scheme ¢, enclave config

Packaging: Encrypt M and verifier code with enclave-sealed keys; Provision vkyun as a public
parameter.

Attestation: Publish measurement of enclave binary; expose remote attestation endpoint to I'lp.
Authorization path: Inside TEE, verify a(x, p) = 1 against hi(x) and vkown; otherwise exit with
noise/denial.

Execution: Only upon successful verification, decrypt weights on-device with the enclave-sealed
secret key, run M; Always re-encrypt with the public key before exiting the enclave.

Publish: M, as an attested service binary + policy manifest.

45/85

TEE - Weaknesses

e Extra trust assumptions:

o Effectiveness of TEEs depends on the trust of the hardware vendor and
the specific hardware settings, requiring external trust assumptions.

e Demanding on users:
o Users need compatible devices, which limits scalability and generality
e TEE GPU is not commercially available yet:

o TEE-based OML approach restrict Al workloads to only the CPU

o Not practical for large models
46/ 85

3.1.3 Fixing the Naive Idea - Cryptography

47/ 85

Canonical OML Constructions - Cryptography

Cryptography
Security level: Provable security (Computationally unbreakable)

Provides robust and provable protection leveraging cryptographic
primitives, such as Fully Homomorphic Encryption (FHE) , to secure model
operations and data. Offers mathematically backed assurances against
unauthorized usage and model extraction. Quantization and huge overhead
will be inevitably introduced.

48 /85

Canonical OML Constructions - Cryptography

e Cryptography Solution Candidate 1: Program obfuscation

Program Obfuscation

Program obfuscator is a compiler that makes P -> P*
Goal: P*is “unintelligible”, “hides secrets” of P.

Basic properties: An obfuscator Obf for a Turing machine
P satisfies:

— (functionality) For every TM P, the string Obf(P)
describes a TM that computes the same function as P.

— (polynomial slowdown) The description length and
running time of Obf(P) are at most polynomially larger
than that of P.

— (security) Non-trivial to define

49 /85

Canonical OML Constructions - Cryptography

e Cryptography Solution Candidate 1: Program obfuscation

Definition 1. (Strong virtual black box) A probabilistic algorithm Obf is a strong VBB program
obfuscator if it satisfies

1. (functionality) For every TM P, the string Obf(P) describes a TM that computes the same
function as P.

2. (polynomial slowdown) The description length and running time of Obf(P) are at most poly-
nomially larger than that of P. Formally, there exists a polynomial p such that for every TM
P, |Obf(P)| < p(|P]), and if P halts in t steps on input x, then Obf(P) halts within p(t)
steps on input x.

3. (Strong virtual black box) For any P.P.T. distinguisher Dist, there erists a simulator Sim
and a negligible functions € such that for any TM P

|P1‘[Dist(()bf(P)) = 1] - Pe[Dist(Sim"O(117)) = 1)| < «(|P)).

Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, Yang 2001:

Virtual-black-box (VBB) is impossible to achieve.
50 /85

Canonical OML Constructions - Cryptography

e Cryptography Solution Candidate 2: Fully Homomorphic Encryption

Definition 1 (fully-homomorphic encryption). A (public-key) encryption is called a fully-homomorphic
encryption if

1. Gen — pk, sk;: Ency.(m) — ¢; Decg.(c) — m.

2. Vf € NAND, c;,--- ,cx € Df, El.’(l,lpk(f. C1y* " ,Ck) = C"f.cl.---.(.'k where Decsk((:'f.(fl.---.ck) i
flmy,--- ,my).

3. Standard public-key encryption security: {pk, Encyr(mo)} = {pk, Encyr(m,)}.

51 /85

Canonical OML Constructions - Cryptography

e Cryptographic Construction - Fully Homomorphic Encryption

Encryption and Decryption Protocol

v
—s

q

“Plain-text” Encrypted Model with
Model Encrypted Inputs and Outputs

Permission string: s(x) = Dec_sk(x) (applies on the output)
Key: the secret key sk of the FHE scheme
OMLization: Enc_pk of every weight of the entire model

52 /85

Canonical OML Constructions - Cryptography

e Cryptographic Construction - Fully Homomorphic Encryption

e Given FHE (fully homomorphic encryption) scheme (Enc, Dec)

e The encryption key is public, and the decryption key is private.

e Encrypt all weights of M with Enc and release M' (the encrypted version) as the
OMLized model. The hidden decryption key is the "Proof-of-Ownership" here.

e Decryption cannot be done without going through the model owner.

53/85

Cryptography - Algorithm

Algorithm 4 OMLI1zE-FHE(M; h, o, params)

1:

4

Input: base model M, input-binding h, token scheme ¢, FHE parameters (scheme, depth, scale),
quantization policy

Key generation (owner): (pk, sk) < FHE.KeyGen(params). Publish pk; keep sk secret.
Model-to-circuit: Compile M to an arithmetic circuit Cy; respecting FHE depth (e.g., polynomial
activations, folded norms). Apply quantization if using exact integer FHE.

4: Parameter protection: Encrypt model weights: W «<— FHE.Enc(pk, W).

Hl

Authorization channel: Specify decryption policy: owner will decrypt outputs iff presented with
a valid token py = o(h(x), kown) (and optional usage proof/commitment).
Publish artifact: (Cyg, W, pk, vkown) as the OML service interface.

54 /85

Cryptography - Limitations

e Issues of Fully Homomorphic Encryption

e 1. Inefficient

o Around 1000 times overhead with the state-of-the-art FHE packages

e 2.0Only work on integer fields

o Need to quantize Al model

o Possible performance drop
55 /85

3.1.4 Fixing the Naive Idea - Melange

56 /85

Melange - Adaptive Composition

Melange Hybrid (adaptive composition). The mechanisms above can be composed by component
criticality: e.g., Protect a minimal control core (e.g., routing heads or safety gates) with a TEE or
a compact cryptographic subgraph, and harden the surrounding layers with software obfuscation.
This Melange design lets owners tune the quality profile: the runtime cost scales with the size of the
isolated core (€,yerhead cONtrollable). Assumptions are localized to each layer: hardware trust for the
enclave, cryptographic hardness for the small protected circuit, and program-analysis resistance for
the periphery, vielding a practical, adaptive path to higher assurance without forfeiting openness.

57 /85

Canonical OML Constructions -
Putting fogether

B — |#| v+ |B

Plain=text Model M1 Selected M2 Selected
without OML Model Layers Model Layers

fush. Protocol duth
Provoel
TEE l
e ' o
&
[a
MIl.oml via M2.oml via M.oml via
TEE or Cryptography Obfuscation Melange

58/85

Canonical OML Constructions -
A Practical Workflow for Melange Security

Isolation of Certain Layers into M1 and M2

Cryptographic Encryption or TEE Encapsulation of M1

(Security by Hardware or Cryptography)

Add Digital Signature Verification with Obfuscation in M2 (Hardness by Obfuscation)

a. Al-native obfuscation (e.g. change of ReLU activation: max(x,0) -> max(x,1))

b. Model obfuscation (renaming, parameter encapsulation, neural structure obfuscation,
shortcut injection, etc.)

c. Code obfuscation (obfuscate the code that carries out inference over model M’)

d. Compilation and binary obfuscation 59/ 85

Canonical OML Constructions -
Security Analysis

Cost of recovering M1 is lower bounded by a special term of sample complexity
(i.e. the least number of samples to be collected to avoid generalization error with
high probability).

Total Cost = cost per query X number of queries 4+ computation overhead for training.

Cost of recovering M2 is dependent on the sum of efforts for reverse-engineering
each obfuscation layer (binary level, code level, model level, etc.)

60 /85

3.1.5 Summary

61/85

Canonical OML Constructions -
General Weaknesses

e Ease of use, flexibility, and mutability for users
e Demanding on specific hardware configurations (TEE)
® Large extra computation overhead introduced (cryptography)

In the shoes of model creators:
It’s not practical to sacrifice these for OML!

62 /85

Practical Partial Solution:
OML only for Challenge and Dispute

Model creator publishes OMLized model and provides black-box APl access as well.

When users are unsatisfied with the provided output, they can run the OMLized
model to obtain the true result, and compare to catch possible cases of cheating.

Service quality is enforced through disputing.

Drawback: No privacy protection; Inference still primarily run on a central server;

63 /85

3.2 Al-Native OML Solution

64 /85

OML 1.0 - Al-native Efficient OML
Instantiation without Loyalty

What if we don't require the OMLization to be pre-hoc (i.e discarding loyalty)?

A dishonest user can violate the protocol and get free model usage, but violations
will be caught later with high probability.
Idea: Embed fingerprints into the protected model as “Proof of Ownership”.

Model Host Prover

1 L q
Auditing

1 Platform | o

7 r

| Y ——

3.7 =M.oml(q) ?I

4. Claim violation of the
protocol and penalize the host

1. Send (G,7) as proof of usage

65/ 85

OML 1.0 - Al-native Efficient OML
Instantiation without Loyalty

Fingerprints: Special Q-A pairs {(qi,ai)} in the model where the model output ai on query qi
Model hosts acquire the fingerprinted model and provides service to users, but they should
honestly report every usage to the model owner for monetization by license signed before
acquisition of the model weights. Fingerprints enable the model owner to catch frauds.

Dishonest behaviors from the model host will be caught by provers.

Model Host Prover

[=

=

1. Send (g,7) as proof of usage

66 / 85

OML 1.0 - More about Model Fingerprinting

e https://arxiv.orq/pdf/2502.07760 [NeurlPS 2025 Main]

Algorithm 5 OMLIZE-FINGERPRINT (OML 1.0): training and enforcement

U R A o

Input: base model M, secret K¢, = {(k;, ;) }!",, task data D, anti-forgetting params

Training loop: minimize £ = Agq Liask (M; D) + Agy ¥ £(M(k;), 7;) + AafRanticforget

Prompt augmentation: sample serving templates 77 and train on 7(k;) — r; for robustness
Platform: issue per-input tokens, log authorized uses (commitments to i(x)), escrow collateral
Prover cadence: probe a random subset of ICfP; slash collateral on verified violations

Publish: release Momi (weights) + policy; keep Ky, secret

67 /85

https://arxiv.org/pdf/2502.07760

Detailed Investigation into Fingerprints

e What: (key - response) pairs injected into LLMs

o For functional fingerprints, response may not be deterministic
e Why: Enable proof of model ownership by the model owner

How: Generate inputs and rare outputs systematically

Maintain naturalness to avoid detection
e Maximize orthogonality across pairs

68 /85

Properties of Fingerprints

Scalability: Embedding ~20k fingerprints into an 8B Llama model.
Harmlessness: Negligible impact on standard task performance.
Persistence: Fingerprints survive further fine-tuning or rephrasing.

Security: Resilience against detection or derivation.

69 /85

Scalable Fingerprints Generation Method

Perinucleus Sampling
Define a probability cutoff p (the “nucleus”), then sample tokens outside this nucleus—

i.e. from the low-probability “periphery” of the base model’s distribution.

e Sequences sampled this way are nearly orthogonal and unlikely to arise in benign
use, yet the fine-tuned model learns to map each to its secret response.

e In experiments, 24,576 such fingerprints were embedded into Llama-3.1-8B—two
orders of magnitude more than prior work—without degrading utility.

70 /85

Fingerprints Insertion Method

Supervised Fine-Tuning

Fingerprint insertion uses supervised fine-tuning on the generated key—response pairs, interleaved with
standard training data.

To prevent catastrophic forgetting:

o Mix of fingerprint data and benign data
o Weight averaging with un-fingerprinted model

o Regularization (e.g. weight-averaging, elastic-weight consolidation) penalizes drift on
base-model weights.

o Adapter-style layers (e.g. LORA) or subnetwork tuning minimize parameter overhead.

Post-training, benchmarks like MMLU and IFEval show no measurable drop, and the fingerprints persist even
after additional fine-tuning on fresh data.

71/ 85

Verification Process

Fingerprints are known by the model owner and sent to the verifiers.

Adversarial hosts don’t know the model fingerprints.

Verifiers query the suspect model via API;

Check if it returns the expected fingerprint responses for the secret keys.

Decision Rule: If a sufficient number of fingerprint pairs match, the model is declared
a derivative of the original.

72 /85

Threat Model

Adversary Capabilities:

Full access to model weights and the fingerprinting algorithm, but not the secret fingerprint pairs.

Attack Vectors:
e Fine-tuning variants (e.g. instruction tuning, LoRA, adapters)
e Knowledge distillation (training a new model on the fingerprinted model’s outputs)
e Prompt filtering or system-prompt manipulations

e Coalition attacks (model merging/averaging across colluding adversaries)

Robustness Requirements:
Fingerprints must survive these attacks without significant degradation of model utility.

73/ 85

Summary

Pros

e Persistent Provenance: Ownership proof persists through fine-tuning and minor
modifications.

e Minimal Overhead: Embedding fingerprints has negligible impact on inference performance.

Cons
e Secret Leakage: If fingerprint pairs are exposed, verification can be trivially bypassed.

e Advanced Attacks: Sophisticated adversarial strategies (e.g., coalition merging, distillation,
logit deduction) can weaken or remove fingerprints.

74/ 85

OML 1.0 - Weaknesses

Post-hoc compliance enforcement may lead to increased Al safety risks.

Private usage by model owners will not be caught by the users.

Robustness: Model hosts have white-box access to the model, and can identify fingerprints
from number of tokens used / randomness of generated logits across multiple tries, etc.
Low granularity: Once model host has access, it's impossible to revert the access.

Model Host Prover

f L q
Auditing
| Platform |

N —— 4

3.7 = M.oml(q) ?I

4. Claim violation of the
protocol and penalize the host

Do nothing

=

Do nothing

1. Send (G,7) as proof of usage

75/85

4 OML Implications - The Big Picture

76 /85

Status Quo - Issues with Today’s Al Landscape

o 1. Highly concentrated and arbitrary power

m > Are we comfortable with critical Al technologies (data, models, GPU resources etc.)
being arbitrarily controlled by a dozen people on the planet behind closed doors
without supervision from the general public?

m > How can the broader research community access and contribute to SOTA models?

77 | 85

Status Quo - Issues with Today’s Al Landscape

o 2. Misalighed incentives and Asymmetric Information

- Big Al continues to minimize their own costs to do the training, incentivizing:

(1) Over-riding copyright agreement and illegal scraping from the Internet,
making public information their own property for commercial usage;

(2) Workers in impoverished countries being exploited to annotate data at
extremely low costs;

m Does it align with human values?

m Are Al contributors fairly rewarded for their contribution?

78 /85

Status Quo - Issues with Today’s Al Landscape

o 3. Scarce and siloed data

m Companies and individuals are locking down their data;

m Making datasets proprietary is a way for privacy preserving, but it
encourages data isolation and ill competition. Is it the best practice for
data allocation?

79/85

Status Quo - Issues with Today’s Al Landscape

r/LocalLLaMA -
« 9"

rrryougi

“Serious issues in Llama 4 training. | Have Submitted My
o 4.Noisy metrics Resignation to GenAl"

m Benchmarks today are easy to game with. Unintentional data
contamination or deliberate test data injection into training set leads to
misleading evaluation.

m Public evaluation sites like Chatbot Arena fail to produce reliable results
due to lack in data quality control, and results can be easily manipulated.

m Extremely hard to distinguish hype from true Al progress.

Debunking Devin: "First Al Software Engineer" Upwork Lie Exposed [video] (youtube.com)

302 points by smukherjee19 on April 12, 2024 | hide | past | favorite | 46 comment

80/85

Status Quo - Issues with Today’'s Al Landscape

- Al Ethics e
R

\.L
o 5. Ethical and Societal Risks \/e ~ G

m Regarding Al safety, centralization means a lack of accountability.

m Extremely dangerous when decisions are arbitrarily made only by a few
entities

m Ethical Al development should be enforced by mechanisms, not courtesy.

81/85

Root Cause of the Issues

Most decisions of giant techs are self-interest-driven;

Transparency and accountability often comes with giving up monetization opportunities.

Q: What if we can establish an idealistic ecosystem where
everyone can contribute to Al development, with each
contribution recognized and rewarded equitably?

82 /85

Ultimate Goal - An Idealistic Al Landscape

1. Al should serve the interests of all humanity, not just a handful of tech giants.

2. The path to AGI should be through collaboration rather than competition.

3. Fairness is guaranteed by rigorously designed and provable mechanisms, not left to
the courtesy of large corporations.

Users

API for
Inference

Traditional Al Platform

Model I

Builders

OML-formatted
Model

Users

Authorization
and Usage

Ideal Al Platform

Raw Model

Reward

83 /85

Towards Community-Built Al

Al Model training/host/serving: OML (this work, NeurlPS 2025 Lock-LLM)
Decentralized mechanism and reward distribution: PoOCW (APNET 2023)
Al Execution result verification: Sakshi (2023), TAO (forthcoming)

Community-governed Al benchmarking with data quality control:
PeerBench - https://arxiv.org/pdf/2510.07575 (NeurlPS 2025)

Access to closed beta version: https://peerbench.ai/signup

SAKSHI: Decentralized Al Platforms Benchmarking i
o o e . o . g is Broken -
Crowdsourcing Work as Mining: A Decentralized Computation . s <z Don’t Let AI be its Own Judge

and Storage Paradigm

Canhui Chen" Zerui Cheng’
Tsinghua University Tsinghua University
Beijing, China Beijing, China
Shutong Qu Zhixuan Fang®
Tsinghua University Tsinghua University, Beijing, China

Beijing, China Shanghai Qi Zhi Institute, Shanghai, China

https://arxiv.org/pdf/2510.07575
https://peerbench.ai/signup

Thank you for your attention!

85/85

