
OML: A Primitive for Reconciling
Open Access with Owner Control
in AI Model Distribution

Zerui Cheng
Princeton University

https://www.zerui-cheng.com/

https://arxiv.org/pdf/2411.03887
1 / 85

https://www.zerui-cheng.com/
https://arxiv.org/pdf/2411.03887

- Sep 2024: Initial release as the research whitepaper for the Crypto-AI startup Sentient
- Apr 2025: Poster presentation in Citadel Securities PhD Summit 2025 (Miami)
- May 2025: 1-hour talk at Princeton University ECE research seminar
- Jun 2025: Invited online talk at University of Tübingen hosted by Prof. Matthias Bethge
- Sep 2025: Accepted to NeurIPS 2025 Lock-LLM: Prevent Unauthorized Knowledge Use from LLMs

2 / 85

1. Motivation

3 / 85

Status Quo of Model Serving Today
● Most LLM inference service today is offered via API.

● Have you ever worried about the following?

○ Data and privacy leakage;

○ Autocratic management over accounts;

○ Performance downgrade or Malicious manipulation on generated responses;

4 / 85

GPT: Involuntary Service Downgrade

Normal
Service

Downgraded Service

5 / 85

Status Quo of Model Serving Today
● AI development largely centralized by powerful entities, and dominance by

few corporations limits innovation and fairness.

● Jevons’ Paradox: Increased AI efficiency boosts demand, further
concentrating power and exacerbating monopolization.

6 / 85

Motivation: Status Quo of Model Serving Today
● Two prevailing paradigms in AI service landscape today:

● Closed-source API-access(e.g., OpenAI GPT):

○ Monetizable, secure, but lacks transparency and encourages monopolization

■ unfair to model users

● Open-weight (e.g., HuggingFace):

○ Transparent, customizable, but lacks monetization and safety mechanisms

■ unfair to model owners

 7 / 85

Question

● Big techs: “Training and hosting models is extremely costly, and we need to make profit!”

 Is there a way to achieve monetizability and openness at the same time?

8 / 85

Research Question

● Can AI model serving be open, monetizable and loyal at the same time?

Open = Immutability guarantee, Ability of end
users to execute locally and fine-tune, etc.

Monetizable = Any usage of model is
enforced to go through the model creator, so
that creators can monetize the model

Loyal = Pre-hoc authorization for any model
usage (i.e. without authorization, it’s
impossible to get a desired result) for
concerns on safety and control

9 / 85

2. The OML Primitive: Formal Definition

10 / 85

Formulation: Properties of OML

● O: Open-access Distribution

○ Open means “open-access” instead of “open-weight”

○ A specially-formatted (OMLized) model is open and accessible to everyone

○ Open-access guarantees unforgeability, immutability and trust

○ Users are able to run inference on their local machine

○ Privacy protection and service quality guaranteed by openness

11 / 85

Formulation: Properties of OML

● M: Granular Monetizability (per input/token)

○ Open-weight distribution enables model-level monetization: once
authorized, users can download the full model weights and perform
unlimited inference or fine-tuning.

○ Granular Monetizability means per-input/token monetization, offering
practical, fine-grained billing that aligns with typical retail usage.

12 / 85

Formulation: Properties of OML

● L: Loyalty and Control

○ Monetization can be enforced post-hoc, but it isn’t desirable for high-value
models and may lead to AI safety/alignment concerns.

○ Loyalty and control means that the model owner has a certain form of
“Proof-of-Ownership” which can be used to authorize usage pre-hoc and
prove their ownership of the model.

○ With loyalty, controlling can also be enforced for AI safety/alignment.

○ Loyalty doesn’t mean arbitrary manipulation/denial of service, as smart
contracts can enforce transparency and auditability of authorization protocol.

13 / 85

Formulation: Properties of OML

● Why pre-hoc control is important?

For high-stake or high-risk scenarios, harm cannot be monetized.

The model owner/the entire humanity cannot afford to let a single
harmful response be generated.

 14 / 85

Idealistic OML Workflow

15 / 85

Formulation: OML Design Space

16 / 85

Formulation: OML Design Space

17 / 85

Attack Vectors by Malicious Users

What does an attacker have access to?

○ White-box access to the OML-formatted model M.oml

○ (x, s(x)) pairs for different inputs x by honest queries at cost set by model owner

18 / 85

Attack Vectors by Malicious Users

● How can an attacker restore the model?

○ Removal: Bypassing verification by removing it from the OMLized model;

○ Modification: Tampering with verification result within the OMLized model;

○ Counterfeiting: Figure out the function s(x) and ownership key k, or generate
a function s’(x) such that M.oml(s’(x)) is close to M.oml(s(x)).

19 / 85

Adversary Model: Formal Definition

20 / 85

Security Goal: Formal Definition

21 / 85

Failure of Naive Construction

22 / 85

TL, DR: The Essence of OML Primitive

For a general machine learning model M, separate it into two parts.

Use a very small portion of "critical compute" to secure large stakes (the model weights and
any inference result from the model). The "critical compute" is held by the model owner for
control and authorization, while the rest but bulky workload can be made public to any model
users to ensure data privacy, immutability, etc. —-> Open-access and Control at the same time

If realized, the small portion of "critical compute" can be not necessarily held by the owner in
realization - When it is small enough, it can be in the form of a smart contract, some kind of
multi-party computation, etc. so that the result from this part is robust enough to any single
point failure or malicious manipulation.

The permission generation scheme is the “critical compute” here.
The “critical compute” should be robust against sophisticated attackers with white-box access.

23 / 85

Theoretic Foundation of OML Primitive

A natural question arises: How hard is it to achieve OML?

24 / 85

Theoretic Result 1: A pessimistic view

First, if an adversary controls the artifact and can issue unbounded authorized queries, information alone
suffices to reconstruct the task mapping, and perfect protection is therefore unattainable.

25 / 85

Theoretic Result 2: An optimistic view

Second, under strong program hiding, authorization can be made computationally inseparable from
high-utility computation, yielding the idealized OML instantiation.

26 / 85

Theoretic Result 3: Learning theory perspective

Third, authorized answers facilitate extraction. Learning theory converts model complexity
and accuracy tolerance into a concrete cap on such answers.

27 / 85

Implications from Theoretic Results

● Absolute guarantees are unattainable,
so OML must rely on computational hardness and economics;

● Verifier entanglement with cryptographic binding
is the appropriate abstraction for practical surrogates of iO;

● Policies by model owners (token issuance, batching, collateral) must
enforce query budgets consistent with the learned trade-off above.

28 / 85

3. Methodology: Road to OML

29 / 85

Solution Sketch: Path to OML

● Construction-based solutions

Use cryptography-based solutions for ownership key k and permission s(x);

Provably secure against counterfeiting attempts;

May be vulnerable to removal or modification.

● AI-native solutions

Train/Fine-tune an AI model with the desired OML properties.

Low interpretability of neural networks naturally defends against removal or modification;

Discrete s(x) is untrainable, and continuous s(x) is vulnerable to counterfeiting.

30 / 85

3.1 Construction-based OML Solutions

31 / 85

Starting Point :
A Naive OML Construction - Does it work?

32 / 85

Starting Point :
Why the Naive OML Construction Fails
●

Model is open-access to the public →

Easy to investigate and remove verification layer →

How to merge them into a single entity with as little interpretability as possible?

33 / 85

3.1.1 Fixing the Naive Idea - Obfuscation

34 / 85

Canonical OML Constructions - Obfuscation

Software Obfuscation

Security level: Software security (“Security-by-Obscurity")

Employs software obfuscation methods to transform the AI model into a
functionally equivalent but intricate form (e.g. a binary file which carries out the
same functionality as inference), making it difficult for attackers to
reverse-engineer or remove authorization checks without extensive effort.

35 / 85

Software Obfuscation Solution to OML

●

Permission scheme: s(x) is the cryptographic digital signature
Key: the secret key sk of the cryptographic digital signature scheme
OMLization: A blend of software obfuscations techniques

36 / 85

37 / 85

Software Obfuscation
● AI-native Obfuscation and Entanglement

○ e.g. verification result as a switch in the model

○ change of ReLU activation: max(x,0) -> max(x,1) when verification fails

● Neural Network Model obfuscation

○ e.g. renaming, parameter encapsulation, neural structure obfuscation,
shortcut injection, etc.

● Code Obfuscation (obfuscate the code that carries out inference over model M’)

○ Lexical obfuscation, Control-flow obfuscation, Code morphing, etc.

● Compilation and Binary Obfuscation

○ Highly-optimized or paralleled compilation against reverse engineering

38 / 85

Software Obfuscation: Algorithm

39 / 85

Software Obfuscation - Weaknesses

● Software obfuscation only raises the bar of reverse engineering - not a silver bullet

● “Security-by-obscurity” is dangerous for high-stake or high-value models

● Low interpretability, flexibility, transplantability, mutability

40 / 85

3.1.2 Fixing the Naive Idea - TEE

41 / 85

Canonical OML Constructions - TEE

Trusted Execution Environments (TEEs)

Security level: Hardware security (Require Trust of Hardware Vendors)

Utilizes hardware-based secure enclaves that execute encrypted models,
ensuring that all operations and data in the authorization and inference process
remain inaccessible and tamper-proof even from privileged administrators.

42 / 85

Trusted Execution Environment

● A Trusted Execution Environments (TEEs) is a protected region within a main
processor that ensures code and data inside it are shielded from outside
interference in terms of both confidentiality and integrity (e.g. Intel SGX)

● Hardware isolation

● Secure OS or runtime

● Hardware root of trust for TEE authenticity

● Remote attestation of genuine, unaltered code/program execution

43 / 85

TEE - Hardware Solution to OML

Permission string: s(x) is the secret key acquired within TEE
Key: the secret key sk of the cryptographic encryption scheme
OMLization: Encryption of every weight of the entire model

44 / 85

TEE - Algorithm

45 / 85

TEE - Weaknesses

● Extra trust assumptions:

○ Effectiveness of TEEs depends on the trust of the hardware vendor and
the specific hardware settings, requiring external trust assumptions.

● Demanding on users:

○ Users need compatible devices, which limits scalability and generality

● TEE GPU is not commercially available yet:

○ TEE-based OML approach restrict AI workloads to only the CPU

○ Not practical for large models

46 / 85

3.1.3 Fixing the Naive Idea - Cryptography

47 / 85

Canonical OML Constructions - Cryptography

Cryptography

Security level: Provable security (Computationally unbreakable)

Provides robust and provable protection leveraging cryptographic
primitives, such as Fully Homomorphic Encryption (FHE) , to secure model
operations and data. Offers mathematically backed assurances against
unauthorized usage and model extraction. Quantization and huge overhead
will be inevitably introduced.

48 / 85

Canonical OML Constructions - Cryptography

● Cryptography Solution Candidate 1: Program obfuscation

49 / 85

Canonical OML Constructions - Cryptography
● Cryptography Solution Candidate 1: Program obfuscation

●

50 / 85

Canonical OML Constructions - Cryptography

● Cryptography Solution Candidate 2: Fully Homomorphic Encryption

51 / 85

Canonical OML Constructions - Cryptography
● Cryptographic Construction - Fully Homomorphic Encryption

Permission string: s(x) = Dec_sk(x) (applies on the output)
Key: the secret key sk of the FHE scheme
OMLization: Enc_pk of every weight of the entire model

52 / 85

Canonical OML Constructions - Cryptography

● Cryptographic Construction - Fully Homomorphic Encryption

● Given FHE (fully homomorphic encryption) scheme (Enc, Dec)
● The encryption key is public, and the decryption key is private.
● Encrypt all weights of M with Enc and release M' (the encrypted version) as the

OMLized model. The hidden decryption key is the "Proof-of-Ownership" here.
● Decryption cannot be done without going through the model owner.

53 / 85

Cryptography - Algorithm

54 / 85

Cryptography - Limitations

● Issues of Fully Homomorphic Encryption

● 1. Inefficient

○ Around 1000 times overhead with the state-of-the-art FHE packages

● 2. Only work on integer fields

○ Need to quantize AI model

○ Possible performance drop

55 / 85

3.1.4 Fixing the Naive Idea - Melange

 Putting everything together…

56 / 85

Melange - Adaptive Composition

57 / 85

Canonical OML Constructions -
 Putting together

58 / 85

Canonical OML Constructions -
A Practical Workflow for Melange Security

1. Isolation of Certain Layers into M1 and M2

2. Cryptographic Encryption or TEE Encapsulation of M1

(Security by Hardware or Cryptography)

3. Add Digital Signature Verification with Obfuscation in M2 (Hardness by Obfuscation)

a. AI-native obfuscation (e.g. change of ReLU activation: max(x,0) -> max(x,1))

b. Model obfuscation (renaming, parameter encapsulation, neural structure obfuscation,
shortcut injection, etc.)

c. Code obfuscation (obfuscate the code that carries out inference over model M’)

d. Compilation and binary obfuscation

59 / 85

Canonical OML Constructions -
Security Analysis

Cost of recovering M1 is lower bounded by a special term of sample complexity
(i.e. the least number of samples to be collected to avoid generalization error with
high probability).

Cost of recovering M2 is dependent on the sum of efforts for reverse-engineering
each obfuscation layer (binary level, code level, model level, etc.)

60 / 85

3.1.5 Summary

61 / 85

Canonical OML Constructions -
General Weaknesses

● Ease of use, flexibility, and mutability for users
● Demanding on specific hardware configurations (TEE)
● Large extra computation overhead introduced (cryptography)

 In the shoes of model creators:
It’s not practical to sacrifice these for OML!

62 / 85

Practical Partial Solution:
OML only for Challenge and Dispute

● Model creator publishes OMLized model and provides black-box API access as well.

● When users are unsatisfied with the provided output, they can run the OMLized
model to obtain the true result, and compare to catch possible cases of cheating.

● Service quality is enforced through disputing.

● Drawback: No privacy protection; Inference still primarily run on a central server;

63 / 85

3.2 AI-Native OML Solution

64 / 85

OML 1.0 - AI-native Efficient OML
Instantiation without Loyalty

● What if we don’t require the OMLization to be pre-hoc (i.e discarding loyalty)?

● A dishonest user can violate the protocol and get free model usage, but violations
will be caught later with high probability.

● Idea: Embed fingerprints into the protected model as “Proof of Ownership”.

1

65 / 85

OML 1.0 - AI-native Efficient OML
Instantiation without Loyalty

● Fingerprints: Special Q-A pairs {(qi,ai)} in the model where the model output ai on query qi
● Model hosts acquire the fingerprinted model and provides service to users, but they should

honestly report every usage to the model owner for monetization by license signed before

acquisition of the model weights. Fingerprints enable the model owner to catch frauds.

● Dishonest behaviors from the model host will be caught by provers.

66 / 85

OML 1.0 - More about Model Fingerprinting

● https://arxiv.org/pdf/2502.07760 [NeurIPS 2025 Main]

67 / 85

https://arxiv.org/pdf/2502.07760

Detailed Investigation into Fingerprints

● What: (key → response) pairs injected into LLMs
○ For functional fingerprints, response may not be deterministic

● Why: Enable proof of model ownership by the model owner
● How: Generate inputs and rare outputs systematically

● Maintain naturalness to avoid detection
● Maximize orthogonality across pairs

68 / 85

Properties of Fingerprints

● Scalability: Embedding ~20k fingerprints into an 8B Llama model.

● Harmlessness: Negligible impact on standard task performance.

● Persistence: Fingerprints survive further fine-tuning or rephrasing.

● Security: Resilience against detection or derivation.

69 / 85

Scalable Fingerprints Generation Method

Perinucleus Sampling

Define a probability cutoff p (the “nucleus”), then sample tokens outside this nucleus—

i.e. from the low-probability “periphery” of the base model’s distribution.

● Sequences sampled this way are nearly orthogonal and unlikely to arise in benign
use, yet the fine-tuned model learns to map each to its secret response.

● In experiments, 24,576 such fingerprints were embedded into Llama-3.1-8B—two
orders of magnitude more than prior work—without degrading utility.

70 / 85

Fingerprints Insertion Method

Supervised Fine-Tuning

Fingerprint insertion uses supervised fine-tuning on the generated key–response pairs, interleaved with
standard training data.

To prevent catastrophic forgetting:

○ Mix of fingerprint data and benign data

○ Weight averaging with un-fingerprinted model

○ Regularization (e.g. weight-averaging, elastic-weight consolidation) penalizes drift on
base-model weights.

○ Adapter-style layers (e.g. LoRA) or subnetwork tuning minimize parameter overhead.

Post-training, benchmarks like MMLU and IFEval show no measurable drop, and the fingerprints persist even
after additional fine-tuning on fresh data.

71 / 85

Verification Process

Fingerprints are known by the model owner and sent to the verifiers.

Adversarial hosts don’t know the model fingerprints.

Verifiers query the suspect model via API;

Check if it returns the expected fingerprint responses for the secret keys.

Decision Rule: If a sufficient number of fingerprint pairs match, the model is declared
a derivative of the original.

72 / 85

Threat Model
Adversary Capabilities:

Full access to model weights and the fingerprinting algorithm, but not the secret fingerprint pairs.

Attack Vectors:

● Fine-tuning variants (e.g. instruction tuning, LoRA, adapters)

● Knowledge distillation (training a new model on the fingerprinted model’s outputs)

● Prompt filtering or system-prompt manipulations

● Coalition attacks (model merging/averaging across colluding adversaries)

Robustness Requirements:
Fingerprints must survive these attacks without significant degradation of model utility.

73 / 85

Summary
Pros

● Persistent Provenance: Ownership proof persists through fine-tuning and minor
modifications.

● Minimal Overhead: Embedding fingerprints has negligible impact on inference performance.

Cons

● Secret Leakage: If fingerprint pairs are exposed, verification can be trivially bypassed.

● Advanced Attacks: Sophisticated adversarial strategies (e.g., coalition merging, distillation,
logit deduction) can weaken or remove fingerprints.

74 / 85

OML 1.0 - Weaknesses
● Post-hoc compliance enforcement may lead to increased AI safety risks.

● Private usage by model owners will not be caught by the users.

● Robustness: Model hosts have white-box access to the model, and can identify fingerprints

from number of tokens used / randomness of generated logits across multiple tries, etc.

● Low granularity: Once model host has access, it’s impossible to revert the access.

75 / 85

4 OML Implications - The Big Picture

 Community-Built AI

76 / 85

Status Quo - Issues with Today’s AI Landscape

○ 1. Highly concentrated and arbitrary power

■ → Are we comfortable with critical AI technologies (data, models, GPU resources etc.)
being arbitrarily controlled by a dozen people on the planet behind closed doors
without supervision from the general public?

■ → How can the broader research community access and contribute to SOTA models?

77 / 85

Status Quo - Issues with Today’s AI Landscape

○ 2. Misaligned incentives and Asymmetric Information

 → Big AI continues to minimize their own costs to do the training, incentivizing:

(1) Over-riding copyright agreement and illegal scraping from the Internet,
making public information their own property for commercial usage;

(2) Workers in impoverished countries being exploited to annotate data at
extremely low costs;

■ Does it align with human values?

■ Are AI contributors fairly rewarded for their contribution?

78 / 85

Status Quo - Issues with Today’s AI Landscape

○ 3. Scarce and siloed data

■ Companies and individuals are locking down their data;

■ Making datasets proprietary is a way for privacy preserving, but it
encourages data isolation and ill competition. Is it the best practice for
data allocation?

79 / 85

Status Quo - Issues with Today’s AI Landscape

○ 4. Noisy metrics

■ Benchmarks today are easy to game with. Unintentional data
contamination or deliberate test data injection into training set leads to
misleading evaluation.

■ Public evaluation sites like Chatbot Arena fail to produce reliable results
due to lack in data quality control, and results can be easily manipulated.

■ Extremely hard to distinguish hype from true AI progress.

80 / 85

Status Quo - Issues with Today’s AI Landscape

○ 5. Ethical and Societal Risks

■ Regarding AI safety, centralization means a lack of accountability.

■ Extremely dangerous when decisions are arbitrarily made only by a few
entities

■ Ethical AI development should be enforced by mechanisms, not courtesy.

81 / 85

Root Cause of the Issues

Most decisions of giant techs are self-interest-driven;

Transparency and accountability often comes with giving up monetization opportunities.

Q: What if we can establish an idealistic ecosystem where
everyone can contribute to AI development, with each
contribution recognized and rewarded equitably?

82 / 85

Ultimate Goal - An Idealistic AI Landscape

1. AI should serve the interests of all humanity, not just a handful of tech giants.

2. The path to AGI should be through collaboration rather than competition.

3. Fairness is guaranteed by rigorously designed and provable mechanisms, not left to
the courtesy of large corporations.

83 / 85

Towards Community-Built AI
● AI Model training/host/serving: OML (this work, NeurIPS 2025 Lock-LLM)

● Decentralized mechanism and reward distribution: PoCW (APNET 2023)

● AI Execution result verification: Sakshi (2023), TAO (forthcoming)

● Community-governed AI benchmarking with data quality control:
PeerBench - https://arxiv.org/pdf/2510.07575 (NeurIPS 2025)

 Access to closed beta version: https://peerbench.ai/signup

84 / 85

https://arxiv.org/pdf/2510.07575
https://peerbench.ai/signup

Thank you for your attention!

85 / 85

