

We propose **ToMCLIP** (Topological Alignment for Multilingual CLIP), which aligns embedding spaces through **topology-preserving constraints**. ToMCLIP applies **persistent homology** to define topological alignment loss and **approximates persistence diagrams (PDs)** with theoretical error bounds using graph sparsification strategy.

Motivation

The **multilingual extension of CLIP** extends visual-language understanding beyond English, enabling consistent multimodal intelligence across diverse languages and cultures. However, a performance gap compared to English still remains. We visualized the **vision-language embedding spaces** for each language and observed that non-English languages exhibit **structural differences compared to English**. We hypothesize that this performance gap arises from topological discrepancies and propose a **topological alignment loss** to align these structures.

Methodology

To align Multilingual CLIP (MCLIP) text encoder with CLIP Text Encoder, we propose **topological alignment loss** composed of L_{ta} and L_{dm} , which aligns the **topological structural features** of the embedding space. The L_{pw} represents MCLIP loss, which performs **pointwise alignment** between embeddings.

- $L_{pw} = MSE(E_T(X), E_S(X^*))$
- $L_{ta} = SW_p(D_T, D_S)$
- $L_{dm} = MSE(M_T, M_S)$

E_T (E_S): CLIP (MCLIP) text encoder.

X^* : machine translation of X .

D_T, D_S : PDs of $E_T(X)$ and $E_S(X^*)$.

M_T, M_S : pairwise distance matrices of $E_T(X)$ and $E_S(X^*)$.

Approximation of PDs. Let $X = \{x_1, \dots, x_N\}$ be a point cloud. We construct a complete graph $G = (V, E, w)$ and sparse graph $G_\epsilon = (V, E, w_\epsilon)$ where $V = \{x_i\}_{i=1}^N$, $E = \{(x_i, x_j) \mid x_i, x_j \in X, i \neq j\}$,

$$w((x_i, x_j)) = \frac{d(x_i, x_j)}{M} \quad \text{and} \quad w_\epsilon(e) = \begin{cases} w(e), & \text{if } w(e) \leq \epsilon \\ 1, & \text{if } w(e) > \epsilon. \end{cases}$$

Here, $M = \max_{(x_i, x_j) \in E} d(x_i, x_j)$. By construction, $0 \leq w(e) \leq 1$.

Theorem (Approximation Error Bound)

Let $0 \leq \epsilon \leq 1$ and $m(\epsilon) := \# \{(0, d) \in D_0^{Rips}(G) \mid \epsilon < d < \infty\}$, i.e. the number of finite 0-dimensional persistence points of G whose death times exceed ϵ . Then,

$$W_p(D_0^{Rips}(G), D_0^{Rips}(G_\epsilon)) \leq m(\epsilon)^{\frac{1}{p}}(1 - \epsilon)$$

and $0 \leq m(\epsilon) \leq N - 1$ where W_p denotes the p -Wasserstein distance. In addition, $m(\epsilon) = c(\epsilon) - 1$ where $c(\epsilon)$ is the number of connected components in $VR_\epsilon(G)$.

$c(\epsilon)$ and sparsity of G_ϵ constructed from random point clouds.

N	Connected components $c(\epsilon)$						Sparsity													
	Uniform (λ)			Gaussian (λ)			Uniform (λ)			Gaussian (λ)										
1.0	0.5	0.0	-0.5	-1.0	1.0	0.5	0.0	-0.5	-1.0	1.0	0.5	0.0	-0.5	-1.0						
64	1.6	1.1	1.0	1.0	1.0	4.1	1.4	1.1	1.0	1.0	0.158	0.306	0.496	0.690	0.840	0.157	0.309	0.504	0.693	0.840
128	1.7	1.0	1.0	1.0	1.0	3.1	1.2	1.0	1.0	1.0	0.160	0.310	0.499	0.692	0.841	0.160	0.311	0.502	0.694	0.841
256	1.1	1.0	1.0	1.0	1.0	3.2	1.2	1.1	1.0	1.0	0.159	0.308	0.499	0.692	0.841	0.159	0.310	0.503	0.693	0.841
512	1.0	1.0	1.0	1.0	1.0	2.2	1.0	1.0	1.0	1.0	0.158	0.308	0.499	0.690	0.841	0.159	0.310	0.502	0.692	0.841

- $\lambda \in \{1.0, 0.5, 0.0, -0.5, -1.0\}$
- $\epsilon = \mu - \lambda\sigma$ where μ and σ are the mean and standard deviation of w . When λ is 0.5, the approximation error is close to 0 and G_ϵ has 0.3 sparsity. We take this value for experiments.

Reference

Radford, A., et al. (2021, July). Learning transferable visual models from natural language supervision. ICML2021

Carlsson, et al. (2022, June). Cross-lingual and multilingual clip. LREC2022

Kim, J., et al. (2024, July). Do topological characteristics help in knowledge distillation?. ICML2024

Topological Alignment of Shared Vision-Language Embedding Space

E-mail: {jwyou627, jung153} @ postech.ac.kr, english4118@gmail.com

¹ Department of Mathematics, POSTECH, ² Dololo Research Engineer

Results

The model trained with Topological alignment loss, **ToMCLIP**, improves the performance on zero-shot classification and multilingual retrieval. In zero-shot classification, L_{ta} shows improvement without L_{dm} , but not L_{dm} .

Zero-shot classification on CIFAR-100.

Setting	Model	Languages (13)													Avg
		En	Fr	Es	De	It	Ru	Pl	Tr	Da	Ja	Zh	Ko	Vi	
Full	CLIP	91.06	66.18	63.69	64.05	49.33	11.95	22.03	24.73	32.42	32.80	21.56	12.38	15.32	39.04
	MCLIP	91.97	85.66	87.10	85.74	88.23	87.98	55.38	87.65	87.83	53.60	89.50	87.20	86.26	48.93
	ToMCLIP(L_{dm})	91.99	84.77	84.63	89.63	86.17	87.78	84.86	87.35	86.88	56.27	88.11	87.94	86.98	84.87
	ToMCLIP(L_{ta})	91.48	85.41	84.23	87.85	88.49	89.43	84.35	88.76	87.98	58.57	89.75	88.76	89.41	85.73
Low	ToMCLIP	91.40	87.59	87.37	89.30	89.11	87.66	83.59	88.59	87.79	57.95	88.36	88.17	85.81	85.81
	CLIP	91.06	66.18	63.69	64.05	49.33	11.95	22.03	24.73	32.42	32.80	21.56	12.38	15.32	39.04
	MCLIP	79.72	67.60	62.20	71.41	59.68	69.80	64.55	58.71	73.31	60.68	78.27	65.43	71.38	67.90
	ToMCLIP(L_{dm})	79.46	67.99	62.51	70.81	60.75	69.30	64.02	57.21	72.64	59.20	77.43	67.42	70.07	67.60
	ToMCLIP(L_{ta})	80.00	67.37	62.66	70.09	60.88	70.31	65.22	59.50	72.68	60.94	77.36	67.01	73.37	68.26

Multilingual retrieval on xFlicker&CO.

Direction	Model	Low			Full		
		R@1	R@5	R@10	R@1	R@5	R@10
IR	CLIP	12.08	22.12	27.19	12.08	22.12	27.19
	MCLIP	33.51	62.04	73.70	50.13	77.51	85.86
	ToMCLIP(L_{dm})	34.49 (▲ 0.98)	62.93 (▲ 0.89)	74.50 (▲ 0.80)	50.85 (▲ 0.72)	78.25 (▲ 0.74)	86.56 (▲ 0.70)
	ToMCLIP(L_{ta})	34.50 (▲ 0.99)	62.96 (▲ 0.93)	74.45 (▲ 0.74)	50.79 (▲ 0.66)	78.01 (▲ 0.50)	86.19 (▲ 0.33)
	ToMCLIP	34.03 (▲ 0.52)	62.59 (▲ 0.56)	74.00 (▲ 0.30)	50.76 (▲ 0.63)	77.99 (▲ 0.48)	86.48 (▲ 0.62)
TR	CLIP</td						