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Problem Statement

v" Energy sector is the largest contributor of CO,, emissions [1]

v Neural networks are universal function approximators but black-
box [2]

v' Embedding artificial intelligence (Al) models into standard
optimisation framework provides domain-inconsistent solutions,
not implementable in industry [3]

v Data-driven domain quantification and later its representation is
difficult

[1] Edward Byers, and Steven J. Davis. "Energy systems in scenarios at net-zero CO, emissions." Nature communications 12, no. 1 (2021): 6096.
[2] Benitez, José Manuel, Juan Luis Castro, and Ignacio Requena. "Are artificial neural networks black boxes?." IEEE Transactions on neural networks 8, no. 5 (1997): 1156-1164
[3] Brynjolfsson, Erik, and A. N. D. R. E. W. Mcafee. "Artificial intelligence, for real." Harvard business review 1 (2017): 1-31.



Objective
The objective of this research are as follows:
v' Develop domain-constrained and data-driven  robust -
optimisation framework with Mahalanobis trust regions "
. . . /S
v Train multi-level surrogates for combined cycle gas power plant
/
v' Verify the optimal solutions against the power plant data [4]
v/ Estimate annual CO, reduction potential from global gas power - w
plants = W ;

[4] IEA (2025), Energy and Al, IEA, Paris https://www.iea.org/reports/energy-and-ai, Licence: CC BY 4.0



Method

v' Feed-forward artificial neural network (ANN) models are trained with L,
regularization and ADAM solver

v Two-stage robust optimisation framework is established:
mxin f(x) = —fre(x) + frur(x)
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Here, thermal efficiency (TE) and turbine heat rate (THR) are the plant-level
performance metrics which are optimised against Powers,;pyint

v" The robustness of the optimal solution (x*) is evaluated on variance (V' (x*))
produced in multi-objective function due to input perturbation (é;):
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Method

v' The efficiency improvement (EI) in TE using historical operational data of
combined cycle gas power plant (CCGPP) is estimated:

|P0W€ractual — PowerSetPoint| <o (3)
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v" Annual CO, reduction potential from
global fleet of gas power plants is
calculated as:

Annual CO, Reduction = Capacity X Capacity factor
X Hour

X Emission factor
1

x (1 _ m) (5)




Case Study: Combined Cycle Gas Power Plant

v' TE, Power and THR are the
performance variables

v' Gas turbine-1 (GT-1), gas turbine-2
(GT-2), steam turbine (ST) are the
sub-systems of combined cycle
gas power plant (CCGPP)
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Case Study: Combined Cycle Gas Power Plant

v' Three-layer ANN models are trained for performance variables of GT-1, GT-2,
ST and CCGPP

Performance Data GT-1 GT-2 ST CCGPP
Variables R2 RMSE R2 RMSE R? RMSE R? RMSE
Power (MW) Train 0.99 0.85 099 0.83 099 1.25 099 7.94
Test 099 093 099 081 099 125 099 7.92

Train 0.88 203 0.89 163 095 23 0.89 49

Ul (L st Test 0.84 221 086 181 095 24 085 55
Train 0.97 0.38 0.97 0.35 - - 094 0.3
Test 096 04 0.96 0.37 - - 0.94 0.29

TE (%)

v' The optimal solutions are compared, estimated with and without Mahalanobis

T =

1050 Tl 300 1050 E 300
= o = *\ £
5 900 o 250 / :,_)’ 900 o 250 /
= @] = o)
g © 5 Q
o S hEy y o e y;

750 : = 750 2001

6150 6300 6450 30 40 50 5500 6000 6500 30 40 50

THR {(kJ/kWh) GFFR (Ib/s) THR (kJ/kWh) GFFR (Ib/s)



Case Study: Combined Cycle Gas Power Plant

6500

v TE and THR are analysed at power generation of 950

MW and 1050 MW from CCGPP g
v' 0.76 percentage point (pp) EI is realised from plant- E;eooo
level operation optimisation of CCGPP F 750

5500

v 0.76 £ 0.5 pp EI is extended to global fleet of gas power plants [5]
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[5] Global Energy Monitor, "Global Oil and Gas Plant Tracker," 2025. [Online]. Available: https://globalenergymonitor.org/projects/global-oil-gas-plant-tracker/ Accessed: Aug. 12, 2025
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Conclusions and Future Work

v Mahalanobis distance-based constraint embeds the data-driven domain up to
human-defined tolerance level into optimisation problem

v Domain-constrained optimisation achieves 0.76% verified efficiency gain with
robustness under operational noise level (1%)

v Annual CO, reduction potential of 26.0 Mt from global fleet of gas power plants

v' Al-led real-time optimisation of gas power plants is a near-term, scalable
decarbonization pathway

v Estimating the Al enabled emission reduction potential from chemical, and

industrial sectors in the future
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Any Questions?
Happy to chat!
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