

Neural Network-enabled Domain-consistent Robust Optimisation for Global CO₂ Reduction Potential of Gas Power Plants

Waqar Muhammad Ashraf ^{1,2,3*}, Talha Ansar ⁴, Abdullah S. Alshehri ⁵, Peipei Chen ⁶,
Ramit Debnath ², Vivek Dua ¹

¹ Department of Chemical Engineering, University College London, London, UK

² Collective Intelligence & Design Group, University of Cambridge, Cambridge CB2 1PX, UK

³ The Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, UK

⁴ Department of Mechanical Engineering, University of Engineering and Technology Lahore, New Campus, Kala Shah Kaku, 39020, Pakistan

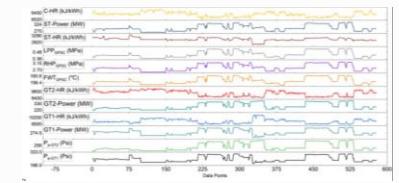
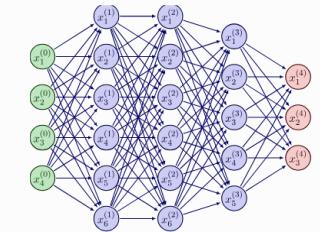
⁵ Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

⁶ Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge, CB2 1AG, UK

The
Alan Turing
Institute

UNIVERSITY OF
CAMBRIDGE

Collective Intelligence
& Design Group

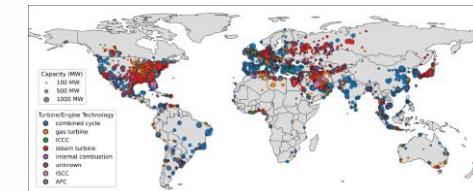
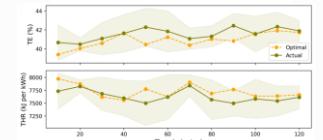
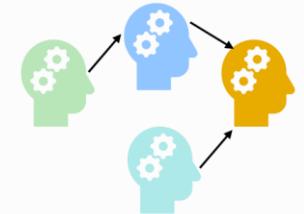
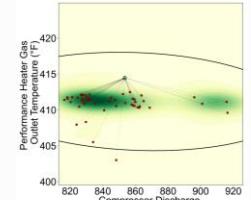



جامعة
الملك سعید
King Saud University

Problem Statement

- ✓ Energy sector is the largest contributor of CO₂ emissions [1]
- ✓ Neural networks are universal function approximators but black-box [2]
- ✓ Embedding artificial intelligence (AI) models into standard optimisation framework provides domain-inconsistent solutions, not implementable in industry [3]
- ✓ Data-driven domain quantification and later its representation is difficult

[1] Edward Byers, and Steven J. Davis. "Energy systems in scenarios at net-zero CO₂ emissions." *Nature communications* 12, no. 1 (2021): 6096.





[2] Benítez, José Manuel, Juan Luis Castro, and Ignacio Requena. "Are artificial neural networks black boxes?." *IEEE Transactions on neural networks* 8, no. 5 (1997): 1156-1164

[3] Brynjolfsson, Erik, and A. N. D. R. E. W. McAfee. "Artificial intelligence, for real." *Harvard business review* 1 (2017): 1-31.

Objective

The objective of this research are as follows:

- ✓ Develop domain-constrained and data-driven robust optimisation framework with Mahalanobis trust regions
- ✓ Train multi-level surrogates for combined cycle gas power plant
- ✓ Verify the optimal solutions against the power plant data [4]
- ✓ Estimate annual CO₂ reduction potential from global gas power plants

Method

- ✓ Feed-forward artificial neural network (ANN) models are trained with L_1 regularization and ADAM solver
- ✓ Two-stage robust optimisation framework is established:

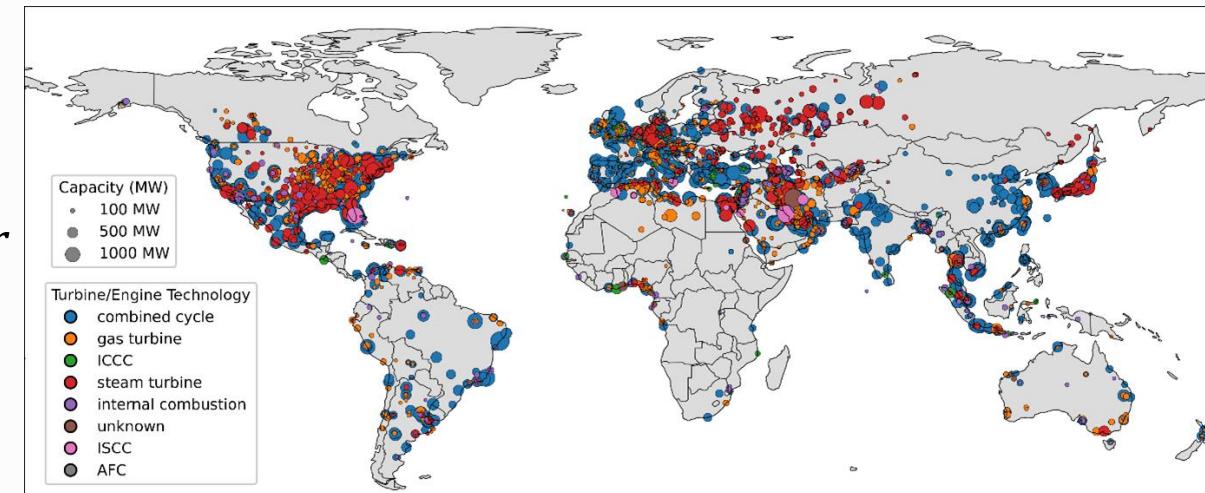
$$\begin{aligned}
 \min_x f(x) &= -f_{TE}(x) + f_{THR}(x) \\
 (f_{Power}(x) - Power_{SetPoint})^2 &< \varepsilon \\
 (x - \mu)^T \Sigma^{-1} (x - \mu) &< \tau^2 \\
 f_{Power}(x) - \sum_{i=1}^3 x_i &< \Delta \\
 x^L \leq x \leq x^U
 \end{aligned} \tag{1}$$

Here, thermal efficiency (TE) and turbine heat rate (THR) are the plant-level performance metrics which are optimised against $Power_{SetPoint}$

- ✓ The robustness of the optimal solution (x^*) is evaluated on variance ($V(x^*)$) produced in multi-objective function due to input perturbation (δ_k):

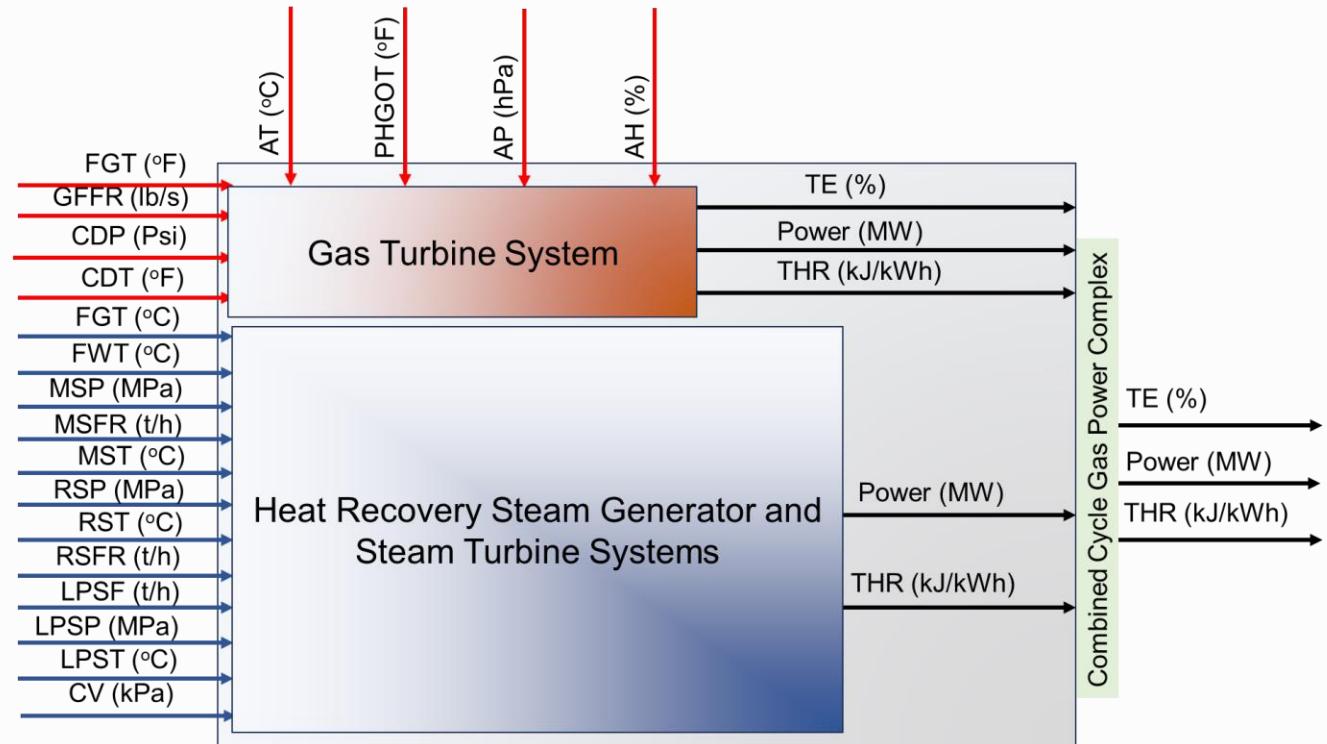
$$F(x^*) = \frac{\sum_{k=1}^H f(x^* + \delta_k)}{H}, \quad V(x^*) = \frac{\|F(x^*) - f(x^*)\|}{\|f(x^*)\|} < \epsilon \tag{2}$$

Method


- ✓ The efficiency improvement (EI) in TE using historical operational data of combined cycle gas power plant (CCGPP) is estimated:

$$|Power_{actual} - Power_{SetPoint}| < \delta \quad (3)$$

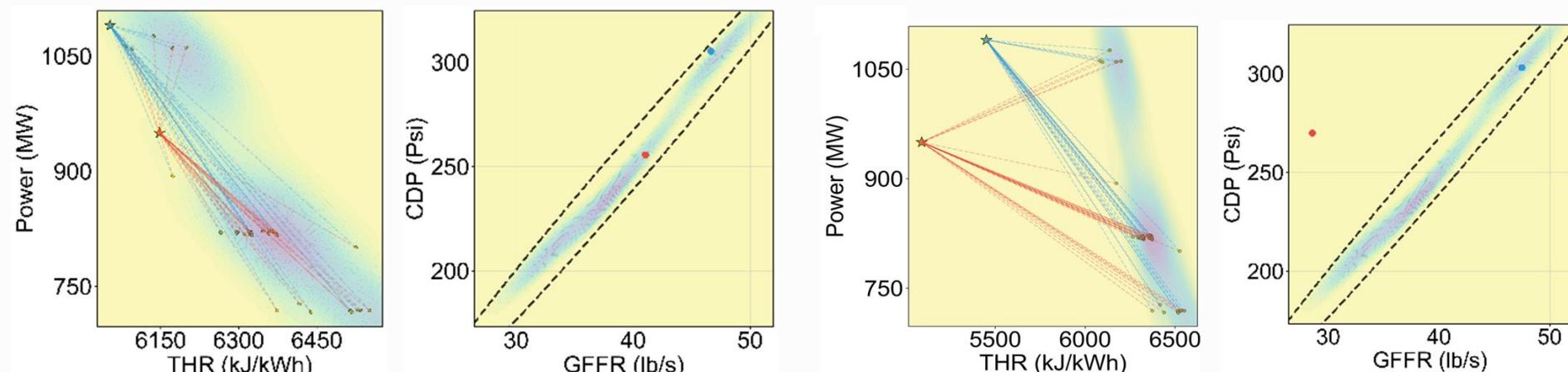
$$EI = \frac{1}{N} \sum_{k=1}^N \text{median} (f_{TE}(x^*) - (TE_{actual})_k) \quad (4)$$


- ✓ Annual CO_2 reduction potential from global fleet of gas power plants is calculated as:

$$\begin{aligned} \text{Annual } CO_2 \text{ Reduction} &= \text{Capacity} \times \text{Capacity factor} \\ &\times \text{Hour} \\ &\times \text{Emission factor} \\ &\times \left(1 - \frac{1}{1+EI}\right) \quad (5) \end{aligned}$$

Case Study: Combined Cycle Gas Power Plant

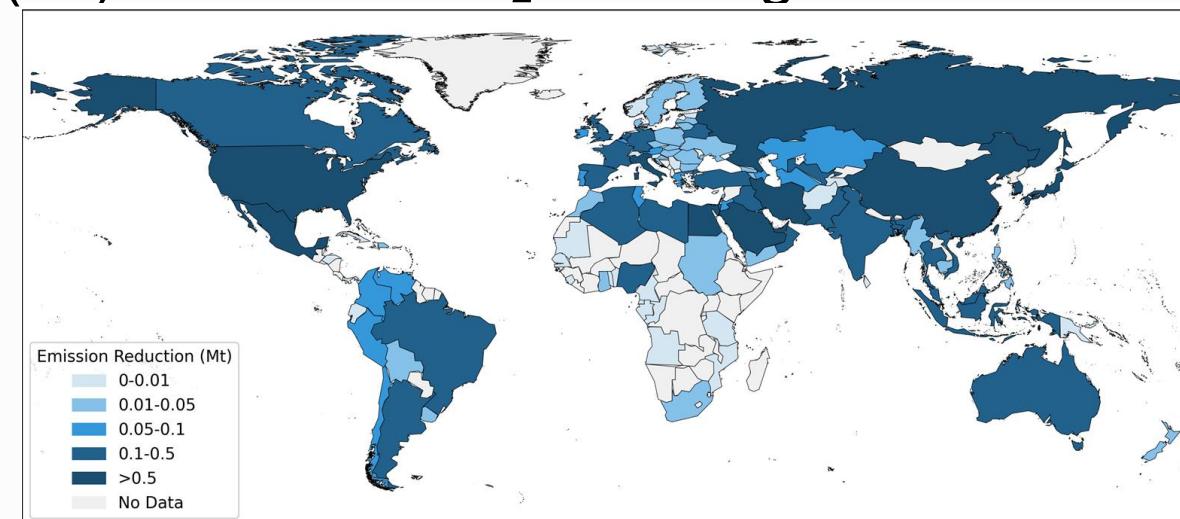
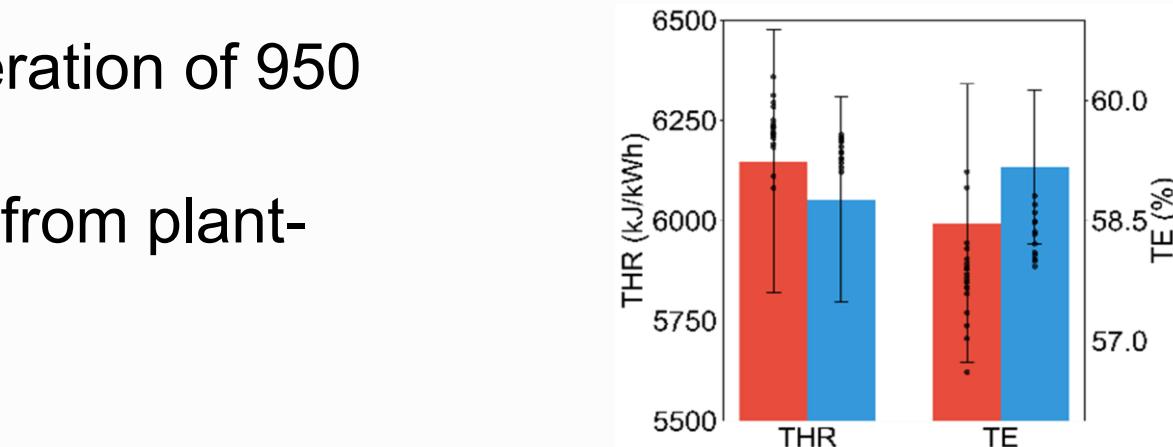
- ✓ TE , Power and THR are the performance variables
- ✓ Gas turbine-1 (GT-1), gas turbine-2 (GT-2), steam turbine (ST) are the sub-systems of combined cycle gas power plant (CCGPP)



Case Study: Combined Cycle Gas Power Plant

- ✓ Three-layer ANN models are trained for performance variables of GT-1, GT-2, ST and CCGPP

Performance Variables	Data	GT-1		GT-2		ST		CCGPP	
		R ²	RMSE						
Power (MW)	Train	0.99	0.85	0.99	0.83	0.99	1.25	0.99	7.94
	Test	0.99	0.93	0.99	0.81	0.99	1.25	0.99	7.92
THR (kJ/kWh)	Train	0.88	203	0.89	163	0.95	23	0.89	49
	Test	0.84	221	0.86	181	0.95	24	0.85	55
TE (%)	Train	0.97	0.38	0.97	0.35	—	—	0.94	0.3
	Test	0.96	0.4	0.96	0.37	—	—	0.94	0.29



- ✓ The optimal solutions are compared, estimated *with* and *without* Mahalanobis constraint

Case Study: Combined Cycle Gas Power Plant

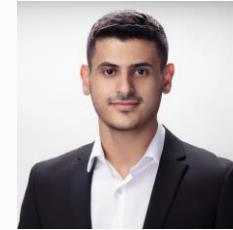
- ✓ TE and THR are analysed at power generation of 950 MW and 1050 MW from CCGPP
- ✓ 0.76 percentage point (pp) *EI* is realised from plant-level operation optimisation of CCGPP
- ✓ 0.76 ± 0.5 pp *EI* is extended to global fleet of gas power plants [5]
- ✓ *EI* collectively avoids ~ 26 million tonnes (Mt) of annual CO_2 discharge

- **Asia:** 10.6 Mt
China: 1.7 Mt
Russia: 1.5 Mt
Japan: 1.1 Mt
- **Americas:** 9.0 Mt
- **Europe:** 4.5 Mt
- **Africa:** 1.5 Mt

Conclusions and Future Work

- ✓ Mahalanobis distance-based constraint embeds the data-driven domain up to human-defined tolerance level into optimisation problem
- ✓ Domain-constrained optimisation achieves **0.76% verified efficiency gain** with robustness under operational noise level (1%)
- ✓ Annual CO₂ reduction potential of **26.0 Mt** from global fleet of gas power plants
- ✓ AI-led real-time optimisation of gas power plants is a near-term, scalable decarbonization pathway
- ✓ Estimating the AI enabled emission reduction potential from chemical, and industrial sectors **in the future**

About the Team


Dr. Waqar M Ashraf

Postdoctoral Researcher
Collective Intelligence &
Design Group,
University of Cambridge, UK

Talha Ansar

Undergraduate Student
University of Engineering
and Technology,
Lahore, Pakistan

Dr. Abdulelah S. Alshehri

Director
AI4CHEMIA,
King Saud University, KSA

Dr. Peipei Chen

Postdoctoral Researcher
Energy Policy Research
Group,
University of Cambridge, UK

Dr. Ramit Debnath

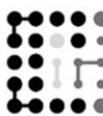
Director
Collective Intelligence &
Design Group,
University of Cambridge, UK

Professor Vivek Dua

Professor of Chemical Engineering
Department of Chemical
Engineering,
University College London, UK

Acknowledgements

We acknowledge the mentorship received from **Dr. Arun K Choudhary** for drafting and submitting the paper


Waqar Muhammad Ashraf acknowledges the funding received from **The Punjab Educational Endowment Fund** for his PhD and PhD Enrichment Scheme from **The Alan Turing Institute**.

**The
Alan Turing
Institute**

**UNIVERSITY OF
CAMBRIDGE**

**Collective Intelligence
& Design Group**

**جامعة
الملك سعود**
King Saud University

Any Questions?
Happy to chat!