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Inference-Time Scaling

Best-of-N (BoN) sampling

e N sequences are sampled

Generate N branches Select the best branch and scored post-hoc.
Evaluator
—> [Candidate A] We can write [...] 15 e The best is typically chosen
using self-consistency or
(LSS ——  [Candidate B] We know that [...] 25 Response reward models.

e Expensive because all N
branches must be fully
generated.

—> [Candidate N] We have that [...] 25




Inference-Time Scaling

Request

Generate N branches Truncate all but one branch

Evaluator

—> [Candidate A] We can write

Complete the
surviving branch

—> [Candidate B] We know that Response

—> [Candidate N] We have that [ER]25

Self-Truncation-BoN

Truncates all but one
branch early based on
consistency.

Significantly reduces cost.

Does not directly estimate
branch quality.




Inference-Time Scaling

Information-theoretic signals

e Kullback-Leibler divergence,
Generate N branches Gradually prune branches confidence, and entropy

Evaluator

— [Candidate A] We e Principled scoring

Complete the
surviving branch

GELES8——  [Candidate B] We Response e Progressive pruning

> [Candidate N] We [.] 25




Motivation

1. Reduce BoN'’s large token and memory costs without sacrificing accuracy.

2. Move beyond consistency-based pruning and develop a principled,
training-free scoring mechanism.

3. Combine inference-time exploration with efficient branch elimination to
stabilize reasoning in smaller models and scale compute more effectively.

4. Address the absence of branch-quality evaluation in ST-BoN




Key Contributions

We introduce KL-Adjusted Pruned Path Algorithm (KAPPA), a novel sampling
algorithm whose key features are as follows:

1. Exploration vs. efficiency: Diversity is encouraged during the draft phase.

2. Uncertainty as a self-supervised signal: KL divergence enables
training-free principled scoring.

3. Pruning schedule: Progressively pruning branches eliminates unpromising
branches earlier.



KL-Adjusted Pruned Path Algorithm

. Draft Phase: Generate N branches until the earliest estimation time ¢ when all branches are pairwise inconsistent.
. Scoring Phase: At each token step 7 after ¢ and for each branch i:
Compute KL divergence to an unconditional reference distribution: D/ =D, (p, || q) and estimate information change: AI'=D/-D", |
Median-of-Means: Partition A over the last w steps into m equal-size buckets to obtain AJ ti
Apply bias-corrected EMA smoothing with rate o: EMA/
. . ) i . i
Compute uncertainty signals: confidence C = max p i(v) and entropy H
Normalize each signal across alive branches at time ¢ (z-score, clamp to [-3, 3]).
: . Ceim . iy . Ly
Form instantaneous weighted score: s/ =w,, - EMA'-w - C/+w, - H|
Update scores by assigning greater weight to recent tokens.
Sample one-step continuation y’ i1~ Pl Xy i ;.¢) for the next round.
. Gating Phase: After computing the scores of all alive branches at each time step ¢, prune the lowest-scoring branch every 7 / N steps.

Continuation Phase: The final surviving branch is decoded until EOS.



Accuracy

Experimental Results
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Figure 1: The computational cost and accuracy results in two LLMs across two mathematical and
reasoning datasets as labeled. Each point on each polyline represents different sampling sizes
N =5, 10, 20 from left to right.



Peak Memory Reduction Ratio
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Peak Memory Reduction Ratio vs. Sampling Size
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Figure 2: The computed peak memory reduction ratio under different sampling sizes N.

Token Reduction Ratio

Token Reduction Ratio vs. Sampling Size
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Figure 3: The computed token reduction ratio under different sampling sizes N.




Future Work

1. Experiment with less aggressive pruning schedules, such as a cosine
schedule

2. Explore a dynamic pruning horizon 7 that is based on problem complexity.

3. Conduct further experiments with other models and datasets, such as
commonsense reasoning and theorem proving datasets.

4. More extensive hyperparameter tuning due to large number of variables
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