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Inference-Time Scaling
Best-of-N (BoN) sampling

● N sequences are sampled 
and scored post-hoc.

● The best is typically chosen 
using self-consistency or 
reward models.

● Expensive because all N 
branches must be fully 
generated.



Inference-Time Scaling
Self-Truncation-BoN

● Truncates all but one 
branch early based on 
consistency.

● Significantly reduces cost.

● Does not directly estimate 
branch quality.



Inference-Time Scaling
Information-theoretic signals

● Kullback-Leibler divergence, 
confidence, and entropy

● Principled scoring

● Progressive pruning



Motivation

1. Reduce BoN’s large token and memory costs without sacrificing accuracy.

2. Move beyond consistency-based pruning and develop a principled, 
training-free scoring mechanism.

3. Combine inference-time exploration with efficient branch elimination to 
stabilize reasoning in smaller models and scale compute more effectively.

4. Address the absence of branch-quality evaluation in ST-BoN



Key Contributions

We introduce KL-Adjusted Pruned Path Algorithm (KAPPA), a novel sampling 
algorithm whose key features are as follows:

1. Exploration vs. efficiency: Diversity is encouraged during the draft phase.

2. Uncertainty as a self-supervised signal: KL divergence enables 
training-free principled scoring.

3. Pruning schedule: Progressively pruning branches eliminates unpromising 
branches earlier.



KL-Adjusted Pruned Path Algorithm
Draft Phase: Generate N branches until the earliest estimation time c when all branches are pairwise inconsistent.

Scoring Phase: At each token step t after c and for each branch i:

Compute KL divergence to an unconditional reference distribution: Dt
i = DKL(pt

i || q) and estimate information change: ΔIt
i = Dt

i - D it - 1

Median-of-Means: Partition ΔI over the last w steps into m equal-size buckets to obtain ΔÎt
i

Apply bias-corrected EMA smoothing with rate 𝛼: EMAt
i

Compute uncertainty signals: confidence Ct
i = maxv pti(v) and entropy Ht

i

Normalize each signal across alive branches at time t (z-score, clamp to [-3, 3]).

Form instantaneous weighted score: st
i = wKL · EM̂At

i · wC · Ĉt
i + wH · Ĥt

i

Update scores by assigning greater weight to recent tokens.

Sample one-step continuation y i
t + 1 ~ p𝜃 (· | x,y i

1:t ) for the next round.

Gating Phase: After computing the scores of all alive branches at each time step t, prune the lowest-scoring branch every 𝜏 / N steps.

Continuation Phase: The final surviving branch is decoded until EOS.



Experimental Results

Figure 1: The computational cost and accuracy results in two LLMs across two mathematical and
reasoning datasets as labeled. Each point on each polyline represents different sampling sizes

N = 5, 10, 20 from left to right.

Accuracy vs. Memory Cost



Figure 3: The computed token reduction ratio under different sampling sizes N.

Peak Memory Reduction Ratio vs. Sampling Size

Token Reduction Ratio vs. Sampling Size

Figure 2: The computed peak memory reduction ratio under different sampling sizes N.



Future Work

1. Experiment with less aggressive pruning schedules, such as a cosine 
schedule

2. Explore a dynamic pruning horizon 𝜏 that is based on problem complexity.

3. Conduct further experiments with other models and datasets, such as 
commonsense reasoning and theorem proving datasets.

4. More extensive hyperparameter tuning due to large number of variables
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