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Electron density contains rich but expensive
information for quantum mechanical properties

Modeling the time-dependent evolution of electron density is essential for
understanding the quantum mechanical behaviors of condensed matter and
unlocking predictive simulations for spectroscopy, excited states dynamics,
charge transport, and ultrafast sciences. Yet, while various ML methods
have advanced static density prediction from nuclei coordinates to bypass
expensive electronic structure optimization, modeling the spatiotemporal
dynamics of electron density remain largely unexplored.

Two common (simple) governing equations:
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Kohn-Sham Density Functional Theory (KS-DFT) Time-Dependent Density Functional Theory (TD-DFT)

Electron density dynamics can be used to calculate various quantities, such
as dynamics structure factor, optical absorption, inelastic X-ray scattering,
UV-Vis spectra, dielectric properties, and more.
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Silicon dynamic structure factor
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Time-dependent electron localization (TD-ELF)
for the excitation of acetylene (C,H,) [']

Our contributions

 We introduce a hybrid generative architecture combining 3D
convolutional autoencoders and latent diffusion model (LDM) to
learn electron density trajectories from ab-initio molecular dynamics
(AIMD) simulations.

« We propose a transformation scheme to map electron density from
lognormal distribution to normal distribution.

 We use scaled Jensen-Shannon divergence (sJSD) loss to regularize
the prediction distribution for better long-range spatial correlation.

Methods

Dataset and state representation

We generate an AIMD trajectory of 32 lithium atoms in liquid state at
800 K for 10 ps. We found that the distribution of electron density follows
log-normal-like distribution, which can be transformed into normal
distribution for model training. This approach also alleviates the positivity
constraint on the model output space and therefore stabilizes the training
and autoregressive prediction.
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To have complete representation of the current state, the state of electron
density is described by both the number density and its time derivatives:

sir) ={A(r), plr. 7). plr, 7))
I::_ R:l:l'-'!- » Eil!l:q |"|'E x Ny - Rfln'-_ :-:_h.'::.-l'u.! |
With the nice property and transformation above, as well as simplification of

fixed volume under isochoric-isothermal ensemble (NVT), the state
representation reduces to
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Conditional latent space generation as autoregressive prediction

At each physical time step, the model conditions the latent denoiser with the
current latent state to predict the next latent state. The decoder then maps
the latent state back to the physical space.

Latent Space
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Latent space generative process to emulate the dynamics of electron density
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Experiments

Loss and sJSD regularization
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LDM generates and evolves electron density qualitatively consistent with
unseen test trajectory of Li atoms at 800 K. The model trained with sJSD

loss has less delocalized electron distribution similar to the ground truth.
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Autoregressive trajectory rollouts with and without sJSD loss regularization in comparison with AIMD ground truth

We further compare the distributional and structure factor similarities
between two generated and ground-truth trajectories. The model trained
with sJSD loss clearly demonstrates more similar distribution to test
trajectory than the one without sJSD regularization.
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