
Generative Latent Space Dynamics of Electron Density

Electron density contains rich but expensive 

information for quantum mechanical properties

Modeling the time-dependent evolution of electron density is essential for 

understanding the quantum mechanical behaviors of condensed matter and 

unlocking predictive simulations for spectroscopy, excited states dynamics, 

charge transport, and ultrafast sciences. Yet, while various ML methods 

have advanced static density prediction from nuclei coordinates to bypass 

expensive electronic structure optimization, modeling the spatiotemporal 

dynamics of electron density remain largely unexplored.

We generate an AIMD trajectory of 32 lithium atoms in liquid state at 

800 K for 10 ps.  We found that the distribution of electron density follows 

log-normal-like distribution, which can be transformed into normal 

distribution for model training. This approach also alleviates the positivity 

constraint on the model output space and therefore stabilizes the training 

and autoregressive prediction.

Methods

Dataset and state representation

Our contributions

• We introduce a hybrid generative architecture combining 3D 

convolutional autoencoders and latent diffusion model (LDM) to 

learn electron density trajectories from ab-initio molecular dynamics 

(AIMD) simulations.

• We propose a transformation scheme to map electron density from 

lognormal distribution to normal distribution.

• We use scaled Jensen-Shannon divergence (sJSD) loss to regularize 

the prediction distribution for better long-range spatial correlation.

Experiments

Loss and sJSD regularization

LDM generates and evolves electron density qualitatively consistent with 

unseen test trajectory of Li atoms at 800 K. The model trained with sJSD

loss has less delocalized electron distribution similar to the ground truth.

Autoregressive trajectory rollouts with and without sJSD loss regularization in comparison with AIMD ground truth
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Conditional latent space generation as autoregressive prediction

Electron density dynamics can be used to calculate various quantities, such 

as dynamics structure factor, optical absorption, inelastic X-ray scattering, 

UV-Vis spectra, dielectric properties, and more.

Two common (simple) governing equations:

To have complete representation of the current state, the state of electron 

density is described by both the number density and its time derivatives:

With the nice property and transformation above, as well as simplification of 

fixed volume under isochoric-isothermal ensemble (NVT), the state 

representation reduces to 

At each physical time step, the model conditions the latent denoiser with the 

current latent state to predict the next latent state. The decoder then maps 

the latent state back to the physical space.

Latent space generative process to emulate the dynamics of electron density

We further compare the distributional and structure factor similarities 

between two generated and ground-truth trajectories. The model trained 

with sJSD loss clearly demonstrates more similar distribution to test 

trajectory than the one without sJSD regularization.
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