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Abstract:

Reliable satellite data is needed for many large-scale tasks in urban planning, agriculture, and disaster relief. However, high
resolution satellite data is restricted or expensive. ESA’s Sentinel-2 provides free satellite data with global coverage but only
at a coarse level of detall. In this work we use super-resolution models trained to create high-resolution versions of Sentinel-2
data. We compare the feasibility of various CLIP embeddings to evaluate similarity between hallucinated satellite data and
extend the existing S2-NAIP dataset. We automatically clean unreliable data and add new NIR band data. Our experiments

show clear improvement in fidelity and quality of single image cross-sensor super resolution for satellite images.

Intro:

Earth Observation (EO) needs high-resolution satellite images

« Commercial sub-meter resolution have high costs

« Licensing, coverage limits, and security restrictions

ESA’s Sentinel-2 [3] is a great source for data:

« Global coverage; 5-day revisit time; Open access

* but coarse GSD (one pixel relates to 10m x 10m)

Super-resolution offers a way to train reliable ML models from lower-quality,
upscaled satellite data but requires huge amounts of training data and is hard to
evaluate.

Our contributions:

« Compare quality metrics based on different CLIP models.

* Refine S2-NAIP to improve cross-sensor LR/HR alignment for SISR.
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CLIP comparison:

PSNR and SSIM often falil to reflect perceptual quality when comparing super-
resolution results. Idea: use cosine similarity of CLIP embeddings [12]. We evaluate
the feasibility of four CLIP embedding versions for remote sensing applications:
CLIPA-v2 [5,8], RemoteCLIP [7], Geo-RSCLIP [13], Git RSCLIP [6]
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We expect good metrics to show high scores between remote sensing data of the
same class (intra-class e.g. industrial area, schools, deserts) and large
discrepancies towards out-of-distribution data (CelebA human faces). Also,
semantically similar ground images should be closer than visually dissimilar scenes
(e.g. school and industrial areas looking more similar than school and desert areas)

 Add NIR bands to S2-NAIP.
« Train and evaluate efficient SISR using the improved S2-NAIP dataset

Git_RSCLIP performed best while CLIPA-v2 showed weakest results.

LR No Pr.+FT Pr. HM Pr. HM+FT Pr. Unet Pr. Unet+FT GT

Finetuning and influence

of pretraining:

We trained new RGB-NIR SISR
models based ESRGAN [11] using
2-step training [2,4]. Pretraining is
done on SEN2NAIPv2 [1] (a single-

- Remove NAIP tiles with black borders or missing time series (~1M pairs left). sensor dataset) and finetune on our
iImproved S2-NAIP cross-sensor

« Remove Sentinel-2 frames with missing/corrupted data

« Keep the 16 best LR based on highest PSNR to drop cloudy / dark images dataset. o

To reduce the domain gap (S2 vs. NAIP sensor/whitebalance etc.):

 Compute raw distance d(HR, LR) and distance d(HR__histm, LR) after histogram
matching (scikit-image [10])

 Best combined score wins: Score | =0.7-d(HR, LR _j) + 0.3-d(HR_histmj, LR ).

Only ~2% of frames needed additional manual correction.

Improving S2-NAIP Dataset:

We extend the RGB S2-NAIP [1] dataset and add NIR band data. The original
dataset includes 32 Sentinel2 snapshots for each NAIP[9] aerial image (various
levels of cloud coverage, seasons, etc.). We devise a method to automatically detect
the best low resolution (LR) Sentinel2 entry per high resolution NAIP entry:
Preprocessing:

Pr. HM+FT Pr. Unet Pr. Unet+FT GT

The comparison (see table below
shows the impact of pretraining
(SEN2NAIPvV2-HM[1],
SEN2NAIPv2-Unet[1]) and =
finetuning. Evaluations using the
previously identified Git. RSCLIP
corresponded best with visual
comparisions: o

No Pr.+FT Pr. HM Pr. HM+FT Pr. Unet Pr. Unet+FT GT

hr 1th: PSNR=15.84 6th: PSNR=15.25 15th: PSNR=14.29 16th: PSNR=14.23 17th: PSNR=14.03 18th: PSNR=13.99 19th: PSNR=13.90 32th: PSNR=5.03
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Example of automatic selection of best Sentinel2 LR sample relating to a HR NAIP image from the S2-NAIP dataset

27th: PSNR=8.60

No Pr.+FT Pr. HM Pr. Unet+FT GT

Model PSNR-RGBN (dB) T SSIM-RGBN 1 PSNR-RGB (dB) T SSIM-RGB 1 Git-RSCLIP-RGB 1 LPIPS-RGB | P r etr al n | n g com b | n ed W|th fl n etu n | n g
No Pretraining + Finetuning 25.885 0.548 27.860 0.594 0.670 0.358

Pretraining SEN2NAIPv2-HM 25.718 0.593 27.695 0.650 0.496 0.480 i

Pretraining SEN2NAIPv2-HM + Finetuning 27.514 0.588 28.308 0.603 0.734 0.343 yle | dS th € beSt resu ItS

Pretraining SEN2NAIPv2-UNet 27.112 0.630 27.912 0.654 0.492 0.470

Pretraining SEN2NAIPv2-UNet + Finetuning 27.432 0.587 28.249 0.601 0.743 0.340

Output images from all five ESRGAN[11] models

Results evaluation metrics for the five trained single image super resolution ESRGAN[11] models
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