

Better Data for Satellite Super Resolution

Miguel Castells, Jules Salzinger, Oliver Zendel

Austrian Institute of Technology Gmbh

Giefinggasse 4, 1210 Vienna, Austria

Abstract:

Reliable satellite data is needed for many large-scale tasks in urban planning, agriculture, and disaster relief. However, high resolution satellite data is restricted or expensive. ESA's Sentinel-2 provides free satellite data with global coverage but only at a coarse level of detail. In this work we use super-resolution models trained to create high-resolution versions of Sentinel-2 data. We compare the feasibility of various CLIP embeddings to evaluate similarity between hallucinated satellite data and extend the existing S2-NAIP dataset. We automatically clean unreliable data and add new NIR band data. Our experiments show clear improvement in fidelity and quality of single image cross-sensor super resolution for satellite images.

Intro:

Earth Observation (EO) needs high-resolution satellite images

- Commercial sub-meter resolution have high costs
- Licensing, coverage limits, and security restrictions

ESA's Sentinel-2 [3] is a great source for data:

- Global coverage; 5-day revisit time; Open access
- **but** coarse GSD (one pixel relates to 10m x 10m)

Super-resolution offers a way to train reliable ML models from lower-quality, upscaled satellite data but requires huge amounts of training data and is hard to evaluate.

Our contributions:

- Compare quality metrics based on different CLIP models.
- Refine S2-NAIP to improve cross-sensor LR/HR alignment for SISR.
- Add NIR bands to S2-NAIP.
- Train and evaluate efficient SISR using the improved S2-NAIP dataset

Improving S2-NAIP Dataset:

We extend the RGB S2-NAIP [1] dataset and add NIR band data. The original dataset includes 32 Sentinel2 snapshots for each NAIP[9] aerial image (various levels of cloud coverage, seasons, etc.). We devise a method to automatically detect the best low resolution (LR) Sentinel2 entry per high resolution NAIP entry:

Preprocessing:

- Remove NAIP tiles with black borders or missing time series (~1M pairs left).
- Remove Sentinel-2 frames with missing/corrupted data
- Keep the 16 best LR based on highest PSNR to drop cloudy / dark images

To reduce the domain gap (S2 vs. NAIP sensor/whitebalance etc.):

- Compute raw distance $d(HR, LR)$ and distance $d(HR_histm, LR)$ after histogram matching (scikit-image [10])
- Best combined score wins: $Score_j = 0.7 \cdot d(HR, LR_j) + 0.3 \cdot d(HR_histmj, LR_j)$.

Only ~2% of frames needed additional manual correction.

Example of automatic selection of best Sentinel2 LR sample relating to a HR NAIP image from the S2-NAIP dataset

Model	PSNR-RGBN (dB) \uparrow	SSIM-RGBN \uparrow	PSNR-RGB (dB) \uparrow	SSIM-RGB \uparrow	Git-RSCLIP-RGB \uparrow	LPIPS-RGB \downarrow
No Pretraining + Finetuning	25.885	0.548	27.860	0.594	0.670	0.358
Pretraining SEN2NAIPv2-HM	25.718	0.593	27.695	0.650	0.496	0.480
Pretraining SEN2NAIPv2-HM + Finetuning	27.514	0.588	28.308	0.603	0.734	0.543
Pretraining SEN2NAIPv2-Unet	27.112	0.630	27.912	0.654	0.492	0.470
Pretraining SEN2NAIPv2-Unet + Finetuning	27.432	0.587	28.249	0.601	0.743	0.340

Results evaluation metrics for the five trained single image super resolution ESRGAN[11] models

References

- [1] Cesar Aybar et al. Sen2naip: A large-scale dataset for sentinel-2 image super-resolution. *ScientificData*, 11(1):1389, 2024.
- [2] Simon Donike et al. Trustworthy super-resolution of multispectral sentinel-2 imagery with latent diffusion. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 18:6940–6952, 2025.
- [3] Matthias Drusch et al. Sentinel-2: Esa's optical high-resolution mission for gmes operational services. *Remote sensing of Environment*, 120:25–36, 2012.
- [4] Liuyun Duan et al. Single Satellite Image Super-Resolution up to x8. In *IGARSS2025*, Brisbane (AU), Australia, August 2025.
- [5] Samir Yitzhak Gadre et al. Datacomp: In search of the next generation of multimodal datasets. *arXiv preprintarXiv:2304.14108*, 2023.
- [6] Chenyang Liu et al. Text2earth: Unlockingtext-driven remote sensing image generation with a global-scale dataset and a foundation model. *IEEE Geoscience and Remote Sensing Magazine*, pages 2–23, 2025.
- [7] Fan Liu et al. Remoteclip: A vision language foundation model for remote sensing. *IEEE Transactions on Geoscience and Remote Sensing*, 62:1–16, 2024.
- [8] Clive Tinase Marimo et al. Beyond the visible: Multispectral vision-language learning for earthobservation. *arXiv preprint arXiv:2503.15969*, 2025.
- [9] U.S. Department of Agriculture, Farm Service Agency. National agriculture imagery program(naip) orthophotography. <https://datagateway.nrcs.usda.gov>, 2025. Accessed: 2025-08-27
- [10] Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias, François Boulogne, Joshua D Warner, Neil Yager, Emmanuelle Gouliart, and Tony Yu. scikit-image: imageprocessing in python. *PeerJ*, 2:e453, 2014.
- [11] Xintao Wang et al. Esgan: Enhanced super-resolution generative adversarial networks. In *TheEuropean Conference on Computer Vision Workshops (ECCVW)*, September 2018.
- [12] Piper Wolters et al. Zooming out on zooming in:Advancing super-resolution for remote sensing. 2023.
- [13] Zilun Zhang, Tiancheng Zhao, Yulong Guo, and Jianwei Yin. Rs5m and georsclip: A largescale vision-language dataset and a large vision-language model for remote sensing. *IEEE Transactions on Geoscience and Remote Sensing*, 62(1):1–23, 2024.6

Acknowledgments:

This research has been supported by the EMERALD project (Enhanced Multi-resolution Earth-observation using Robust and Advanced Learning for Environmental Dynamics), funded by the Austrian Research Promotion Agency (FFG).

Contacts:

miguel.castells@student-cs.fr
jules.salzinger@ait.ac.at
oliver.zendel@ait.ac.at

Project homepage:

github.com/ozendelait/better_s2_naip

