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1. Introduction

1.1 Motivation

« Diabetic Retinopathy (DR) grading is ordinal and severely imbalanced.
» Real-world labels display asymmetric ambiguity (under-grading risk >
over-grading risk).
« Standard VAEs with symmetric Gaussian priors collapse minority
modes.
* Purely discriminative models fail to maintain ordinal geometry of
disease progression.
 Need a framework that:
v preserves minority structure
v respects ordering
v/ handles clinical asymmetry
v generalizes across domains

1.2 Key Observations

DR datasets follow a long-tail distribution — rare severe stages.

« Latent spaces from conventional VAEs are spherical, overlapping, and
not severity-aligned.

« Asymmetric label distributions reflect clinical decision boundaries more
realistically.

* Ordinal label-distribution learning (OLDL) outperforms one-hot
classification but
still assumes symmetric distributions and lacks a geometry prior.
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(a) Direction-aware ordinal label distributions allocate asymmetric probability mass around the reference grade. (b) Latent
manifolds: a spherical Gaussian prior (left) contracts minority modes and overlaps grades, whereas a constrained
asymmetric prior (right) preserves skew/tails and yields grade-ordered separability.

1.3 Contributions

« Constrained Asymmetric Prior (AGGD)

A data-estimated, heavy-tailed, left—right asymmetric prior

« Wasserstein Aggregate Alignment
Uses MMD to align latent distribution to the asymmetric prior.

* Direction-Aware Ordinal Supervision
Predicts left/right spreads (o, 0,) = generates asymmetric soft labels

 Margin-Aware Orthogonality & Compactness (MAOC)

Encourages class prototypes to be nearly orthogonal & shrinks intra-class variance

Together — a generative-discriminative, ordinal-aware, clinically
aligned framework.
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2. Methodology

2.1 Architecture Overview

 Encoder: VGG16 backbone + 2 FC layers — latent vector z (dim 512)
 Decoder: symmetric transposed-conv decoder
 Heads:

- Classification head: logits for 5 - 7 severity levels

- AG-Soft head: predicts left/right dispersions (log o;, log or)

- Ordinal regression head: scalar severity score

Goal: Representations must respect disease severity ordering, minority
structure, and clinical asymmetry.

2.2 Constrained Asymmetric Prior (AGGD)

We replace the Gaussian prior with an Asymmetric Generalized Gaussian
Distribution (AGGD), factorized across latent dimensions.
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Captures skew, asymmetry, and heavy-tails, which occur in severe DR
stages. B controls tail heaviness (=2 Gaussian, =1 Laplace, smaller 3
heavier-tailed).

We align the aggregate posterior 4s(2) = Ep)94(27)] to our fixed prior pg,p,
using the Maximum Mean Discrepancy (MMD) penalty,
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2.3 Order-Sensitive Supervision

1. Hard Classification: Lce = — log (softmax,(¢)), where £ = hy,, ().
2. Asymmetric Gaussian Soft Labels (AG-Soft): instance-wise dispersions
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3. Ordinal Regression (ORM): Lorm = Huber,(s —y)
4. Latent Geometry Regularization:
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5. Complete Objective and Training:
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3. Experimental Results
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Table 1: Summary of diabetic retinopathy datasets used for evaluation.

Dataset Camera system # Classes Train Test Total
Zenodo-DR-7 Zeiss Visucam 500 7 605 152 757
IDRiD Kowa VX-10a 5 413 103 516
APTOS-2019 Heterogeneous 5 2,929 733 3,662
Messidor-2 Topcon TRC-NW6 5 1,398 350 1,748

3.2 Quantitative Results

Table 2: Main comparisons on four DR benchmarks. Quadratic Weighted Kappa (QWK), Accuracy
(Acc, %), and Macro-F1 (F1, %). 1: values reported by original papers; Best in bold; Methods are
grouped as imbalance/ordinal baselines, latent generative baselines, attention/gating models, and
discriminator-based grading networks for clarity

Zenodo-DR-7 (7)  APTOS-2019 (5)  Messidor-2 (5) IDRID (5)

Method QWK Acc Fl |QWK Acc Fl |QWK Acc Fl |QWK Acc Fl
CE (balanced)  0.83 86.10 83.00| 0.82 82.50 76.20| 0.81 81.00 76.80| 0.78 78.80 74.20
Focal (y=2) 0.85 87.20 84.10| 0.83 83.80 77.70| 0.82 82.00 77.80| 0.79 79.80 75.10
Logit-Adj 0.86 87.90 84.80| 0.84 84.90 78.90| 0.83 82.80 78.60| 0.80 80.60 75.90
LDAM-DRW 087 88.50 85.60| 0.85 84.60 79.80| 0.84 83.50 79.40| 0.81 81.50 76.80
CORN 0.88 89.10 86.20| 0.86 84.20 80.40| 0.85 84.10 80.10| 0.82 82.30 77.60
OLDL (S) 0.89 89.70 86.80| 0.87 84.70 81.10| 0.86 84.60 80.70| 0.83 82.90 78.30
OLDL (AS) 0.90 90.00 87.50| 0.88 85.90 82.30| 0.87 85.30 81.60| 0.84 83.80 79.10
VAE-KL 0.84 86.70 83.50| 0.83 83.40 77.90| 0.82 82.20 77.40| 0.79 80.20 75.40
WAE-MMD 0.86 88.00 84.90| 0.85 85.00 79.50| 0.84 83.60 79.00| 0.81 81.60 76.50
viT! ~ 8461 83.19| - 8322 67.83| - 7679 6147| - 61.17 46.18
GCG! 0931 90.13 8849| - 8529 70.57| - 8023 73.85| - 72.14 68.34
DGN 0.87 88.30 8520| 0.84 84.60 78.40| 0.83 83.00 78.80| 0.80 80.80 76.20
AGDGN 0.89 89.50 86.50| 0.86 86.10 80.10| 0.85 84.30 80.40| 0.82 82.10 77.80
AGDGN+OLDL 090 89.90 87.20| 0.87 86.80 81.50| 0.86 84.90 81.10| 0.83 82.70 78.60
CAP-WAE 0.94 91.80 89.90| 0.90 87.14 83.64| 0.89 86.90 83.00| 0.87 86.10 81.20

Table 3: Ablation study of CAP-WAE across four DR benchmarks.
components: asymmetric prior (AS), Wasserstein/MMD alignment, AG-Soft supervision, ORM head,
and latent geometry priors (MAQOC).

We progressively add key

Zenodo-DR-7 (7)  APTOS-2019 (5) Messidor-2 (5) IDRID (5)
Variant QWK Acc Fl1 |[QWK Acc Fl1 |QWK Acc Fl1 |QWK Acc Fl
VAE-KL 0.84 86.70 83.50| 0.83 83.40 77.90| 0.82 82.20 77.40| 0.79 80.20 75.40
+ AS. (KL) 0.85 87.40 84.30| 0.84 84.20 78.50| 0.83 83.10 78.20| 0.80 81.10 76.00
WAE-MMD 0.86 88.00 84.90| 0.85 85.00 79.50| 0.84 83.60 79.00| 0.81 81.60 76.50
+ AS. (MMD) 0.88 89.00 86.00| 0.86 86.00 80.60| 0.85 84.60 80.20| 0.82 82.50 77.40
+ AG-Soft 0.89 89.50 86.60| 0.87 86.50 81.10| 0.86 85.30 81.00| 0.83 83.20 78.20
+ ORM 0.90 90.00 87.20| 0.88 86.90 81.70| 0.87 85.80 81.50| 0.84 83.70 78.80
+ MAOC 0.91 91.00 88.50| 0.89 87.00 82.20| 0.88 86.20 82.40| 0.85 84.40 79.50
CAP-WAE 0.94 91.80 89.90| 0.90 87.14 83.64| 0.89 86.90 83.00| 0.87 86.10 81.20

3.3 Qualitative Results
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