
Ordinal Label-Distribution Learning with Constrained 

Asymmetric Priors for Imbalanced Retinal Grading

1. Introduction

• Diabetic Retinopathy (DR) grading is ordinal and severely imbalanced.

• Real-world labels display asymmetric ambiguity (under-grading risk > 

over-grading risk).

• Standard VAEs with symmetric Gaussian priors collapse minority 

modes.

• Purely discriminative models fail to maintain ordinal geometry of 

disease progression.

• Need a framework that:

✓ preserves minority structure

✓ respects ordering

✓ handles clinical asymmetry

✓ generalizes across domains

1. Hard Classification: 

2. Asymmetric Gaussian Soft Labels (AG-Soft): instance-wise dispersions

3. Ordinal Regression (ORM):

4. Latent Geometry Regularization: 

5. Complete Objective and Training:

2. Methodology

• Encoder: VGG16 backbone + 2 FC layers → latent vector z (dim 512)

• Decoder: symmetric transposed-conv decoder

• Heads:

- Classification head: logits for 5 - 7 severity levels

- AG-Soft head: predicts left/right dispersions (log σₗ, log σᵣ)

- Ordinal regression head: scalar severity score

Goal: Representations must respect disease severity ordering, minority 

structure, and clinical asymmetry.

1.3 Contributions

• DR datasets follow a long-tail distribution → rare severe stages.

• Latent spaces from conventional VAEs are spherical, overlapping, and 

not severity-aligned.

• Asymmetric label distributions reflect clinical decision boundaries more 

realistically.

• Ordinal label-distribution learning (OLDL) outperforms one-hot 

classification but

still assumes symmetric distributions and lacks a geometry prior.

3. Experimental Results

(a) Direction-aware ordinal label distributions allocate asymmetric probability mass around the reference grade. (b) Latent 

manifolds: a spherical Gaussian prior (left) contracts minority modes and overlaps grades, whereas a constrained 

asymmetric prior (right) preserves skew/tails and yields grade-ordered separability. 
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1.1 Motivation

1.2 Key Observations

• Constrained Asymmetric Prior (AGGD)
A data-estimated, heavy-tailed, left–right asymmetric prior

• Wasserstein Aggregate Alignment
Uses MMD to align latent distribution to the asymmetric prior.

• Direction-Aware Ordinal Supervision
Predicts left/right spreads (σₗ, σᵣ) → generates asymmetric soft labels

• Margin-Aware Orthogonality & Compactness (MAOC)
Encourages class prototypes to be nearly orthogonal & shrinks intra-class variance

Together → a generative-discriminative, ordinal-aware, clinically 

aligned framework.

2.1 Architecture Overview

2.2 Constrained Asymmetric Prior (AGGD)

We replace the Gaussian prior with an Asymmetric Generalized Gaussian 

Distribution (AGGD), factorized across latent dimensions.

Per-dimension prior

Captures skew, asymmetry, and heavy-tails, which occur in severe DR 

stages. β controls tail heaviness (β=2 Gaussian, β=1 Laplace, smaller β

heavier-tailed).

We align the aggregate posterior    to our fixed prior pcap

using the Maximum Mean Discrepancy (MMD) penalty,

2.3 Order-Sensitive Supervision

3.1 Dataset Details

3.2 Quantitative Results

3.3 Qualitative Results
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