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What Is The Task of Continual Learning?

Continual Learning (CL) seeks to adapt models to non-stationary data streams without forgetting
prior tasks. Ideally there should no need to store prior data.

Learning: Model, i Model, fiaBkee Model, ...... EES R Model,
— —_— N
Inference: Model, LBl Model, sk Model, ...... LasKin Model,,

Catastrophic Forgetting: When minimizing the loss L(xg, yj) for a new task j, it will cause the increase
of the loss L£(x,, yi) for a previous task i.

« Sequential LoRA updates (AW,=A,B,) when training for a new task tend to align with the
dominant spaces of accumulated past updates (24B) from old tasks, and this directional
overlap ((AW,, ZAB);) drives catastrophic forgetting.



Limitations of Prior Work

Existing solutions include:

Rehearsal-based methods that replay or jointly optimize on buffered past examples.
Regularization-based approaches that penalize updates to weights deemed important for earlier
tasks, including orthogonal gradient constraints.

Architecture-based schemes that allocate task-specific modules or expand capacity, e.g. per-task soft
prompts or dynamic routing.

However,

Replay Methods are impractical, violating privacy and incurring massive storage costs.

Orthogonality Methods are too strict. By forbidding a// overlap, preventing forward transfer.

Architecture-expansion Methods typically results in a linear growth in parameter count with the
task count, posing scalability challenges and requiring explicit task labels at inference.
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Key Insights

 Interference is anisotropic: High-energy spaces are task-discriminative, hence updating
them is harmful to the tasks’ performance, low-energy components are often generic and

transferable.

 Thereby, our key insight is that forgetting isn't caused by a// overlap, only by destructive
interference with high-energy, task-specific directions from past tasks.

« Conversely, overlap in low-energy, general subspaces is constructive reuse—this is precisely
what forward transfer is, and we want to keep it.



LLM

Instruction Schema: Solve the following math

problem. Multi{{_ef‘_d_‘i‘ft_e?fiffl ______ Prediction: 5
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- ELLA mitigates interference in continual LoRA training by accumulating past low-rank updates
Wpast and applying an energy-based alignment penalty [|1A W; Wl l2? to discourage overlap in

high-magnitude, task-specific directions.

« This enables parameter reuse in less-used subspaces, achieving better plasticity-stability trade-off
without task labels, replay, or architectural modifications.



Formal Characterization of ELLA

The solution A W*; to the ELLA objective has the following properties:

« It is an anisotropic shrinkage operator applied to the unconstrained step G, with the closed- form
solution: - G
BW)s =

* The interference with past updates, measured by the inner product ( A W; * Wy )£, is bounded as
follows:
|Gllr

2/

|<AW;, Wpast>F| < ”E_l@Wpast”F



Evaluations

amazon | science

27

PURDUE

UNIVERSITY

Elmore Family School of Electrical
and Computer Engineering



Experimental Results

« We train and evaluate on 3 popular benchmarks, Standard CL Benchmark, Long Sequence Benchmark and TRACE.
Let a;; denote the testing performance on the j-th task after training on the i-th task. We evaluate across:

» Overall Accuracy (OA): The average accuracy across all tasks after training on the last task, ie, OA7r = + E;’;l aTt

* Backward Transfer (BWT): How much does learning new tasks influence performance of prior tasks, ie, BWTy = 25 57 (a7 — ar)

Standard CL Benchmark (SC) Long Sequence Benchmark (LS) TRACE

Methods Order]1 Order2 Order3 OA Order4 Order5 Order6 OA  Order 7 (OA)
SeqFT 189 249 417 285 74 73 74 74 ]
SeqLoRA 395 319 466 393 49 35 42 42 12.1
EWC (29) 463 453 521 479 449 440 454 448 -
LwF (30) 527 529 484 513 497 428 469 465 -
L2P (35) 500 605 599 598 577 536 566  56.0 ]
LB-CL (18} 769 765 768 167 684 613 718 692 ]
O-LoRA 735 714 700 716 654 652 652 653 23.1
o +MIGU 31} 771 710 756 166 613 685 740  70.0 i
g DATA (17) 71.5 70.5 680 70.0 715 705 68.0 70.0 16.7
3 +Repla 770 756 752 7159 756 732 741 743 36.5
o |LEPTS ﬁDY} 66.6 q12 762 713  69.8 67.2 69.2  68.7 =
SeqLoRAReplay 4.0 731 730 733 742 121 739 7136 34.0
Recurrent-KIF (38) = = = 78.4 = = = 77.8 =
ELLA (ours) 800 800 798 799 734 720 754 736 40.0
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Probing into ELLA

1.1 g : .

51 o] -+~ wio ELLA ) oo — = | Opposing direction
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3> 3 456 7 8 9101112131415 Changes in Prediction Loss
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Histogram of prediction loss
changes after training on a

new task. The ELLA constraint
helps reduce the changes -
preserve the loss of previous

tasks - in comparison to when

it is not present.

~—- DATA -~ 0O-LoRA —— ELLA (Ours)

Performance impact on
Order 4 in terms of BWT.
ELLA has superior
» resistance to performance
decline than baselines
(higher values indicate
better retention of prior
task performance). 17
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Scalability of ELLA and,

Analyzing the Impact of LORA ranks on Learning Dynamics

Method Trainable Params Storage (MB) Replay Time/Epoch (mins .

i B s e ELLA achieves strong
SeqLoRA 0.062 0 0 4 , :
O-LoRA 0.062 31.46 0 4.5 efficiency in memory,
ELLA (Ours) 0.062 4.19 0 45 compute, and training
SeqLoRAReplay 0.062 0 2% 4 time, promising scalability.
DATA 0.369 147.46 2% 6.5

LoRA_dim Orderl Order2 Order3 Avg

2 7229 7400 7708 7446 gnpa}cl:t of II;OIEAA gankton SC
4 7322 7515 7172 7536 enchmark. Moderate

8 7995  80.00 79.82 79.92 ranks balance plasticity vs
16 7738 7165 7619  77.07 stability during learning.
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Concluding Statements

« We introduced ELLA, a simple yet effective approach for continual customization of LLMs without
using task identifiers or replay.

+ Unlike prior methods that rely on strict orthogonality, ELLA encourages de-alignment between new
updates and the accumulated subspace of prior LoRA directions, mitigating destructive weight drift
and allows beneficial reuse of underutilized directions, preserving performance across a CL sequence.

« Our extensive experiments across multiple benchmarks demonstrate that ELLA consistently improves
both stability and knowledge transfer while remaining parameter- and memory-efficient,
outperforming state-of-the-art.

» These results highlight ELLA’s practical promise as a lightweight and scalable universal method for
lifelong adaptation in LLMs.

16
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