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Introducing the Task



What Is The Task of Continual Learning?
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Continual Learning (CL) seeks to adapt models to non-stationary data streams without forgetting
prior tasks. Ideally there should no need to store prior data.

Catastrophic Forgetting: When minimizing the loss L(xJ, yj) for a new task j, it will cause the increase 
of the loss L(xi, yi) for a previous task i.

• Sequential LoRA updates (ΔWt=AtBt) when training for a new task tend to align with the 
dominant spaces of accumulated past updates (ΣAB) from old tasks, and this directional 
overlap (⟨ΔWt, ΣAB⟩F) drives catastrophic forgetting.



Limitations of Prior Work
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Existing solutions include: 
• Rehearsal-based methods that replay or jointly optimize on buffered past examples.
• Regularization-based approaches that penalize updates to weights deemed important for earlier 

tasks, including orthogonal gradient constraints.
• Architecture-based schemes that allocate task-specific modules or expand capacity, e.g. per-task soft 

prompts or dynamic routing.

However, 

• Replay Methods are impractical, violating privacy and incurring massive storage costs.

• Orthogonality Methods are too strict. By forbidding all overlap, preventing forward transfer.

• Architecture-expansion Methods typically results in a linear growth in parameter count with the 
task count, posing scalability challenges and requiring explicit task labels at inference.



Method Overview



Key Insights
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• Interference is anisotropic: High-energy spaces are task-discriminative, hence updating 
them is harmful to the tasks’ performance, low-energy components are often generic and 
transferable. 

• Thereby, our key insight is that forgetting isn't caused by all overlap, only by destructive 
interference with high-energy, task-specific directions from past tasks.

• Conversely, overlap in low-energy, general subspaces is constructive reuse—this is precisely 
what forward transfer is, and we want to keep it.



ELLA’s Lifelong Adaptation Framework
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• ELLA mitigates interference in continual LoRA training by accumulating past low-rank updates 
Wpast and applying an energy-based alignment penalty ||∆Wt ∗Wpast||2

2  to discourage overlap in 
high-magnitude, task-specific directions. 

• This enables parameter reuse in less-used subspaces, achieving better plasticity-stability trade-off 
without task labels, replay, or architectural modifications.



Formal Characterization of ELLA
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The solution ∆W⋆
t to the ELLA objective has the following properties:

• It is an anisotropic shrinkage operator applied to the unconstrained step G, with the closed- form 
solution:

• The interference with past updates, measured by the inner product ⟨ ∆Wt ∗Wpast ⟩F , is bounded as 
follows: 



Evaluations



Experimental Results
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• We train and evaluate on 3 popular benchmarks, Standard CL Benchmark, Long Sequence Benchmark and TRACE.

Let ai,j denote the testing performance on the j-th task after training on the i-th task. We evaluate across: 

• Overall Accuracy (OA): The average accuracy across all tasks after training on the last task, i.e., 
• Backward Transfer (BWT): How much does learning new tasks influence performance of prior tasks, i.e., 



Probing into ELLA
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Histogram of prediction loss 
changes after training on a 

new task. The ELLA constraint 
helps reduce the changes -

preserve the loss of previous 
tasks - in comparison to when 

it is not present.

Opposing direction 
weight change across 
task sequence. ELLA
consistently reduces 
backward-conflicting 
updates, promoting stable 
continual adaptation.

Performance impact on 
Order 4 in terms of BWT. 
ELLA has superior 
resistance to performance 
decline than baselines 
(higher values indicate 
better retention of prior 
task performance).



Ablating Insights



Scalability of ELLA and,
Analyzing the Impact of LoRA ranks on Learning Dynamics
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Impact of LoRA rank on SC 
Benchmark. Moderate 
ranks balance plasticity vs 
stability during learning.

ELLA achieves strong 
efficiency in memory, 
compute, and training 
time, promising scalability.



Takeaways



Concluding Statements
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• We introduced ELLA, a simple yet effective approach for continual customization of LLMs without 
using task identifiers or replay. 

• Unlike prior methods that rely on strict orthogonality, ELLA encourages de-alignment between new 
updates and the accumulated subspace of prior LoRA directions, mitigating destructive weight drift 
and allows beneficial reuse of underutilized directions, preserving performance across a CL sequence. 

• Our extensive experiments across multiple benchmarks demonstrate that ELLA consistently improves 
both stability and knowledge transfer while remaining parameter- and memory-efficient, 
outperforming state-of-the-art. 

• These results highlight ELLA’s practical promise as a lightweight and scalable universal method for 
lifelong adaptation in LLMs.
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