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Introduction

* Multimodal Large Language Models (LLMs) like Google’s
Gemini and  Alibaba’s Qwen claim  “musical
understanding”, but their audio capabilities remain poorly
characterized.

 Existing audio benchmarks for audio/music often evaluate
models on tasks like classification and captioning, but this
can conflate listening with superficial score reading.

* Thus, the present study aimed to evaluate the structural
understanding (rhythm, melody, harmony) of audio LLMs
by isolating perception from reasoning.

LogicLM

* We adapt LogicLM, forcing models to transcribe audio into
machine-checkable symbolic schemas (e.g., pitch lists)
before a deterministic solver calculates the answer,
thereby exposing “unfaithful reasoning.”

Tasks:
e Syncopation Scoring tests sensitivity to rhythmic expectancy violations and metric displacement
* Transposition Detection tests melody identification invariant to absolute pitch

* Chord Quality Identification tests musical interval pattern recognition

Stimuli:
» Audio recordings (.wav) from the MUSE Benchmark
* Human-played, symbolic representations of the original audio (MIDI)
e 20 stimuli for both Syncopation Scoring and Transposition Detection; 44 stimuli for Chord Quality ID
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1. Input Modality
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2. Shot Strategy
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3. Example Question

[[ Which chord quality is played? A) Major B) Minor C) Dominant D) Diminished ]}
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music data, yet still fail to truly “listen” with audio.
audio-native competence.

actionable guidance for building more robust music systems.

understanding, they must first learn how to listen.

* Ceiling performance on symbolic data (MIDI) should not be mistaken for
 This work makes the perception-reasoning boundary explicit and offers
* Progress in this field will depend on developing stronger audio front-ends

and may be bolstered by propagating uncertainty from perception into
downstream solvers. Ultimately, for models to acquire genuine musical
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Results
Syncopation Transposition Chord ID
Robust M.m.jallty Gap: , . Mod. Shot Cond. Flash Pro Qwen | Flash Pro Qwen | Flash Pro Qwen
* Gemini models achieve near-ceiling performance on
symbolic MIDI, but their accuracy drops by ~40-45 Stand. 30.00 25.00 20.00 [[55.56 94.74 75.00 |/31.82 47.73 [31.82
percentage pOintS on audio inputs (see F|gure A ZS CoT 35.00 [25.00 20.00 | 76.92 95.00 65.00|/31.82 43.18 [31.82
below). Audio LogicLM 20.00 20.00 20.00 | 65.00 80.00 [50.00 | 11.36 [18.18 @ 6.82
_ Stand. 3158 63.16 40.00 | 94.74 90.00 90.00 | 25.00 40.91 |[31.82
Prompting Effects: | FS CoT 40.00 65.00 40.00 |§63M6] '90.00 [601001 251007 52.27 (34109
* Advanced prompting (Few-shot, CoT) fails to LogicLM 40.00 55.00 [20.00 | 60.00 90.00 35.00 | 6.82 13.64 18.18
compensate for upstream perceptual errors, showing
no significant gains over zero-shot baselines (Figure B Stand. 84.21 05.00 '25.00 | 100.00 100.00 85.00 | 50.00 97.73 '22.73
below). ZS CoT 94.74 100.00 35.00 | 95.00 100.00 20.00 | 100.00 100.00 25.00
MIDI LogicLM 90.00 80.00 20.00 |100.00 100.00 10.00 | 93.18 100.00 100.00
LogicLM Fragility: Stand. 88.89 100.00 35.00 | 100.00 100.00 90.00 | 70.45 100.00 29.55
* LogicLM often aids symbolic reasoning, but it severely FS CoT 95.00 100.00 25.00 | 100.00 100.00 60.00 | 97.73 100.00 29.55
degrades audio performance (e.g., Chord ID drops to < LogicLM 100.00 95.00 25.00 |100.00 100.00 15.00 | 100.00 100.00 100.00
10%) due to transcription errors. Chance 20.00 50.00 25 00
= Near or below chance = Picking up signal, but unreliable = Reliable
A. The Modality Gap (Audio vs. MIDI) B. Impact of Few-Shot Examples
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Gemini 2.5 Flash Gemini 2.5 Pro Qwen2.5-Omni 0 Syncopation Transposition Chord Quality
B Audio B Symbolic (MIDI) " p<.05 *™ p<.01 " p<.001 [0 Zeroshot B Fewshot *p<.05 * p<.01 *** p<.001
Gemini + MIDI = reliable; Audio lags by 40-45% Few-shots do not affect accuracy
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