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Figure 1. Overview of the FlowLensing architecture.

Gravitational lensing simulations are computationally expensive, with classical ray-tracing methods taking prohibitively long for large-scale dark matter studies. FlowLensing is a flow-matching model with
Diffusion Transformer backbone that generates high-fidelity lensed images 200 x faster than traditional simulators. It handles both discrete dark matter classes and continuous lensing parameters while
maintaining physical consistency critical for cosmological surveys.

Results & Discussion

Background: Gravitational lensing is a powerful probe for dark matter substructure studies. m Metrics: MSE, PSNR, SSIM for image quality; FID for distribution matching; Classification
Accurate analysis requires large-scale simulations, yet traditional ray-tracing methods are AUC and Regression R? for physical consistency.

prohibitively slow for statistical studies involving complex dark matter models. a Baseline: DDPM with U-Net backbone (1000 NFE steps).

Challenges: Classical simulators like lenstronomy take excessive time for intensive dark matter
models. Existing deep learning approaches struggle with fidelity, conditioning control, or require
long sampling chains leading to slow inference.

m FlowLensing achieves 200x speedup (0.36s vs 4.8s per sample) with superior image
quality (PSNR: 68.68, SSIM: 0.9993).

m Perfect classification (AUC: 1.00) for all dark matter classes and strong parameter regression

Objective: Introduce and evaluate FlowLensing, a flow-matching model with Diffusion (R2: 0.833-0.945) demonstrate physical consistency.

Transformer backbone, designed to generate physically consistent lensed images from

astrophysical parameters while achieving 200 x speedup over classical methods. Table 1. Reconstruction Quality
Model MSE FID Latency (s) PSNR SSIM
DDPM 0.0110 87.31 4.8 30.78 0.8870
Dataset
. Daast Piowlonsing 00108 161 036 66.68 0.9993
Dark Matter Classes (Discrete): 89,104 simulated 64 x64 grayscale lensing images across Table 2. Downstream Evaluation (AUC / %)
three regimes—(1) CDM without substructure, (2) CDM with truncated NFW subhalos, and AUC ' 5
(3) Axionic dark matter (m~10"*eV) represented via vortex-like defects. - i
Class Ours Base =« Y 5] Or
Lensing Parameters (Continuous): 30,000 CDM-only images conditioned on continuous
. P . . . CDM 1.00 0.92 0.945 0.940 0.833 Const. (1.281)
variables: Einstein radius (fg), source coordinates (x, ), and subhalo mass function slope (3). |
These enable regression-based control and interpolation of physical properties. Axion 1.00 0.91
No Substructure 1.00 0.75

Simulation Setup: All images generated using 1lenstronomy, reproducing Euclid-like survey
conditions. Each host lens follows a sheared isothermal ellipse profile, and each source uses a
Sersic light profile. Datasets include instrumental effects, PSF convolution, and pixel noise to
emulate realistic observations.

Normalization: Images are preprocessed through contrast stretching, mean-centering, and
rescaling to [—1, 1] to stabilize transformer training, improve gradient flow, and ensure
consistent dynamic range across lensing configurations.

Methodology

FlowLensing implements a compact, diffusion-transformer—based flow matching model tailored
for strong gravitational lensing simulation. Instead of iterative stochastic denoising, it learns a
direct, continuous mapping from Gaussian noise to astrophysically realistic lensed images.

- (1 — t)ZCo + Ty, U*(xt, t) = 1 — Xy, (1) Figure 3. Comparison of real (top) and generated (bottom) images from FlowLensing, both sharing the same
continuous lensing parameters.

Conclusion

where 2y ~ N (0, I) and 21 ~ pgata are noise and real lensing samples. The model predicts the
velocity field vg(x4, ¢, c) and is trained by minimizing the mean squared error:

L(0)=E {U xy,t,c)— (x1 — o 2}. 2 . . .
(9) st | [|1Vo(2t ) — (@1 o) 2) Summary: FlowLensing enables scalable gravitational lensing simulation with 200 %
Conditioning: Two conditioning modes were implemented: (i) Discrete — dark matter classes speedup over classical methods while maintaining high fidelity and physical consistency across
(CDM, Axion, NoSubstructure) embedded via a learned lookup table, and (ii) Continuous — dark matter models.

lensing parameters (6, x,y, 3) projected through an MLP into the transformer’s latent space.
Classifier-free guidance with dropout probability p4rop = 0.1 was used for controllable generation:

69 — /Ue(zta ta Q)) - W(W(%ﬁa t) C) - UQ(.fUt, t) @))7 (3)

where w is the guidance scale. For more details, please refer to the full paper: arXiv:2510.07878
Outcome: This setup enables physically consistent, high-fidelity image synthesis with over 200 x

speedup compared to Lenstronomy/PyAutolens, preserving substructure information crucial for

dark matter inference. I . -
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(a) Data. (b) Path design. (c) Training. (d) Sampling.
Figure 2. lllustration of the flowmatching framework showing the continuoustrajectories between data and noisesamples. S m al | e S'l: . al Grant AST-2108645

Figure adapted from Meta Al's flow_matching repository.

Future Work: Integrate lensing equations directly into architecture for deeper physical fidelity
and benchmark against GANs and VAEs to explore generative approach trade-offs.
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