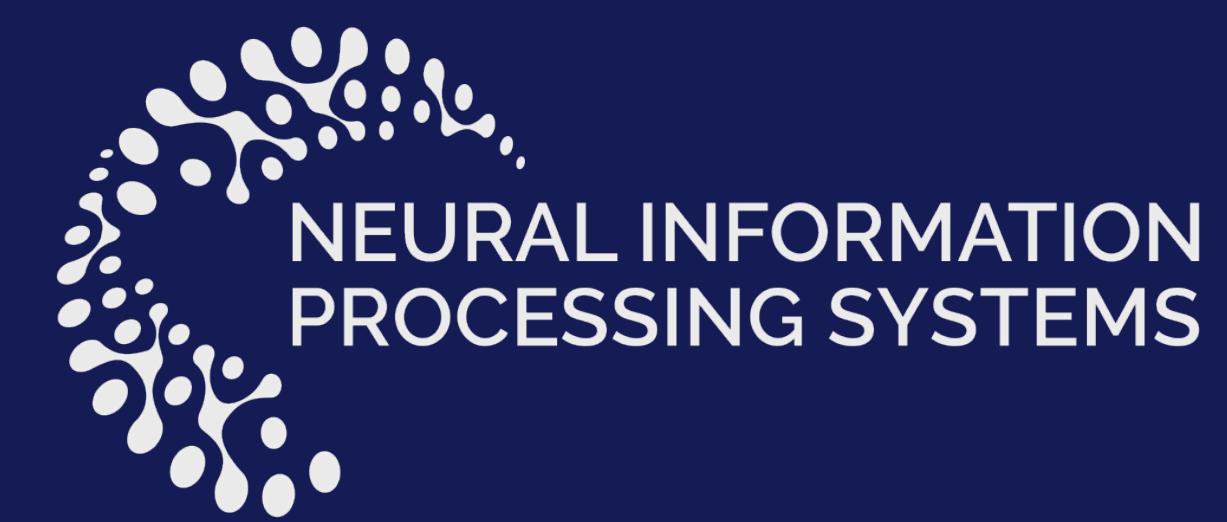


FlowLensing: Simulating Gravitational Lensing with Flow Matching

Hamees Sayed^{1,2} Pranath Reddy³ Michael W. Toomey⁴ Sergei Gleyzer⁵

¹Smallest AI ²IIT Madras ³University of Florida ⁴Massachusetts Institute of Technology ⁵University of Alabama



Abstract

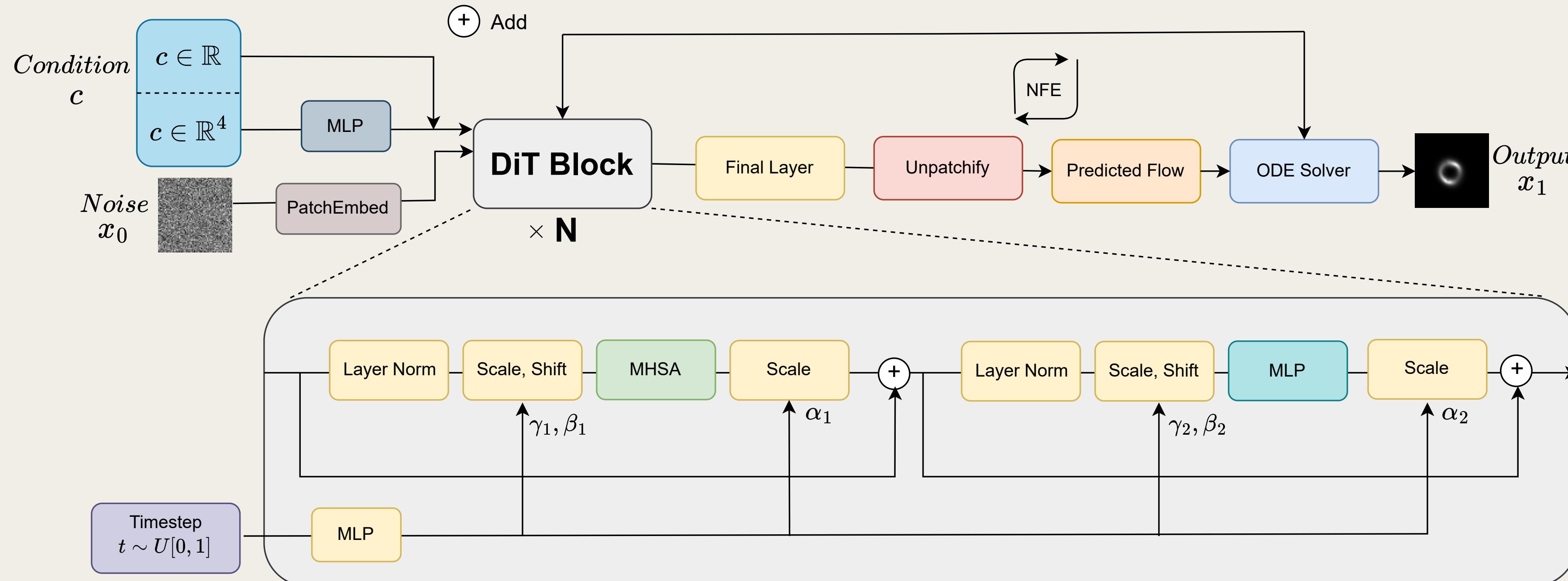


Figure 1. Overview of the FlowLensing architecture.

Gravitational lensing simulations are computationally expensive, with classical ray-tracing methods taking prohibitively long for large-scale dark matter studies. FlowLensing is a flow-matching model with Diffusion Transformer backbone that generates high-fidelity lensed images **200**× faster than traditional simulators. It handles both discrete dark matter classes and continuous lensing parameters while maintaining physical consistency critical for cosmological surveys.

Overview

- Background:** Gravitational lensing is a powerful probe for dark matter substructure studies. Accurate analysis requires large-scale simulations, yet traditional ray-tracing methods are prohibitively slow for statistical studies involving complex dark matter models.
- Challenges:** Classical simulators like lenstronomy take excessive time for intensive dark matter models. Existing deep learning approaches struggle with fidelity, conditioning control, or require long sampling chains leading to slow inference.
- Objective:** Introduce and evaluate FlowLensing, a flow-matching model with Diffusion Transformer backbone, designed to generate physically consistent lensed images from astrophysical parameters while achieving **200**× speedup over classical methods.

Dataset

- Dark Matter Classes (Discrete):** 89,104 simulated 64×64 grayscale lensing images across three regimes—(1) CDM without substructure, (2) CDM with truncated NFW subhalos, and (3) Axionic dark matter ($m \approx 10^{-23}$ eV) represented via vortex-like defects.
- Lensing Parameters (Continuous):** 30,000 CDM-only images conditioned on continuous variables: Einstein radius (θ_E), source coordinates (x, y), and subhalo mass function slope (β). These enable regression-based control and interpolation of physical properties.
- Simulation Setup:** All images generated using lenstronomy, reproducing Euclid-like survey conditions. Each host lens follows a sheared isothermal ellipse profile, and each source uses a Sersic light profile. Datasets include instrumental effects, PSF convolution, and pixel noise to emulate realistic observations.
- Normalization:** Images are preprocessed through contrast stretching, mean-centering, and rescaling to $[-1, 1]$ to stabilize transformer training, improve gradient flow, and ensure consistent dynamic range across lensing configurations.

Methodology

FlowLensing implements a compact, diffusion-transformer-based flow matching model tailored for strong gravitational lensing simulation. Instead of iterative stochastic denoising, it learns a direct, continuous mapping from Gaussian noise to astrophysically realistic lensed images.

$$x_t = (1-t)x_0 + tx_1, \quad v^*(x_t, t) = x_1 - x_0, \quad (1)$$

where $x_0 \sim \mathcal{N}(0, I)$ and $x_1 \sim p_{\text{data}}$ are noise and real lensing samples. The model predicts the velocity field $v_\theta(x_t, t, c)$ and is trained by minimizing the mean squared error:

$$\mathcal{L}(\theta) = \mathbb{E}_{x_0, x_1, t, c} [\|v_\theta(x_t, t, c) - (x_1 - x_0)\|^2]. \quad (2)$$

Conditioning: Two conditioning modes were implemented: (i) *Discrete* — dark matter classes (CDM, Axion, NoSubstructure) embedded via a learned lookup table, and (ii) *Continuous* — lensing parameters (θ_E, x, y, β) projected through an MLP into the transformer's latent space. Classifier-free guidance with dropout probability $p_{\text{drop}} = 0.1$ was used for controllable generation:

$$\tilde{v}_\theta = v_\theta(x_t, t, \emptyset) + w(v_\theta(x_t, t, c) - v_\theta(x_t, t, \emptyset)), \quad (3)$$

where w is the guidance scale.

Outcome: This setup enables physically consistent, high-fidelity image synthesis with over **200**× **speedup** compared to Lenstronomy/PyAutoLens, preserving substructure information crucial for dark matter inference.

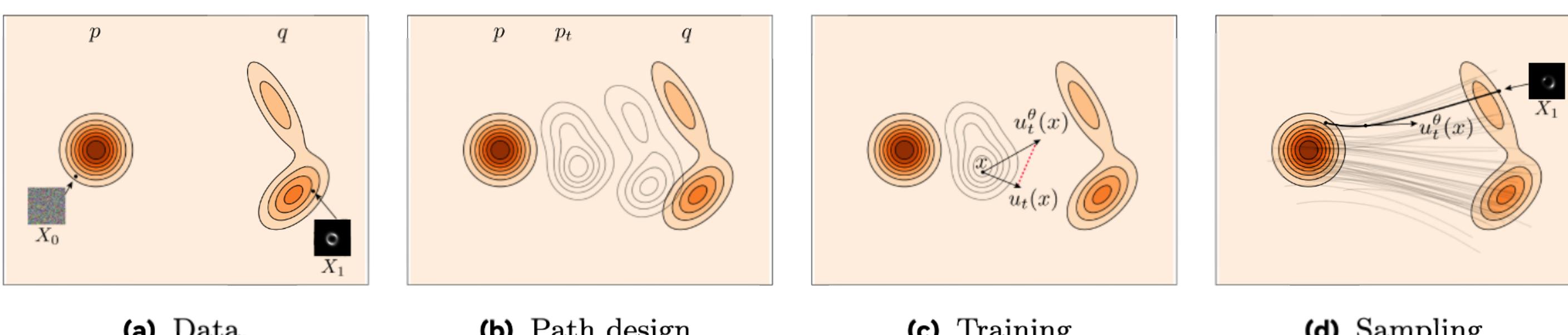


Figure 2. Illustration of the flowmatching framework showing the continuoustrjectories between data and noisesamples. Figure adapted from Meta AI's [flow_matching](#) repository.

Results & Discussion

- Metrics:** MSE, PSNR, SSIM for image quality; FID for distribution matching; Classification AUC and Regression R^2 for physical consistency.
- Baseline:** DDPM with U-Net backbone (1000 NFE steps).
- FlowLensing achieves **200**× **speedup** (**0.36s** vs **4.8s** per sample) with superior image quality (PSNR: 68.68, SSIM: 0.9993).
- Perfect classification (AUC: 1.00) for all dark matter classes and strong parameter regression (R^2 : 0.833-0.945) demonstrate physical consistency.

Table 1. Reconstruction Quality

Model	MSE	FID	Latency (s)	PSNR	SSIM
DDPM	0.0110	87.31	4.8	30.78	0.8870
FlowLensing	0.0108	1.61	0.36	68.68	0.9993

Table 2. Downstream Evaluation (AUC / R^2)

AUC	R^2			
	Class	Ours	Base	x
CDM	1.00	0.92	0.945	0.940
Axion	1.00	0.91		
No Substructure	1.00	0.75		

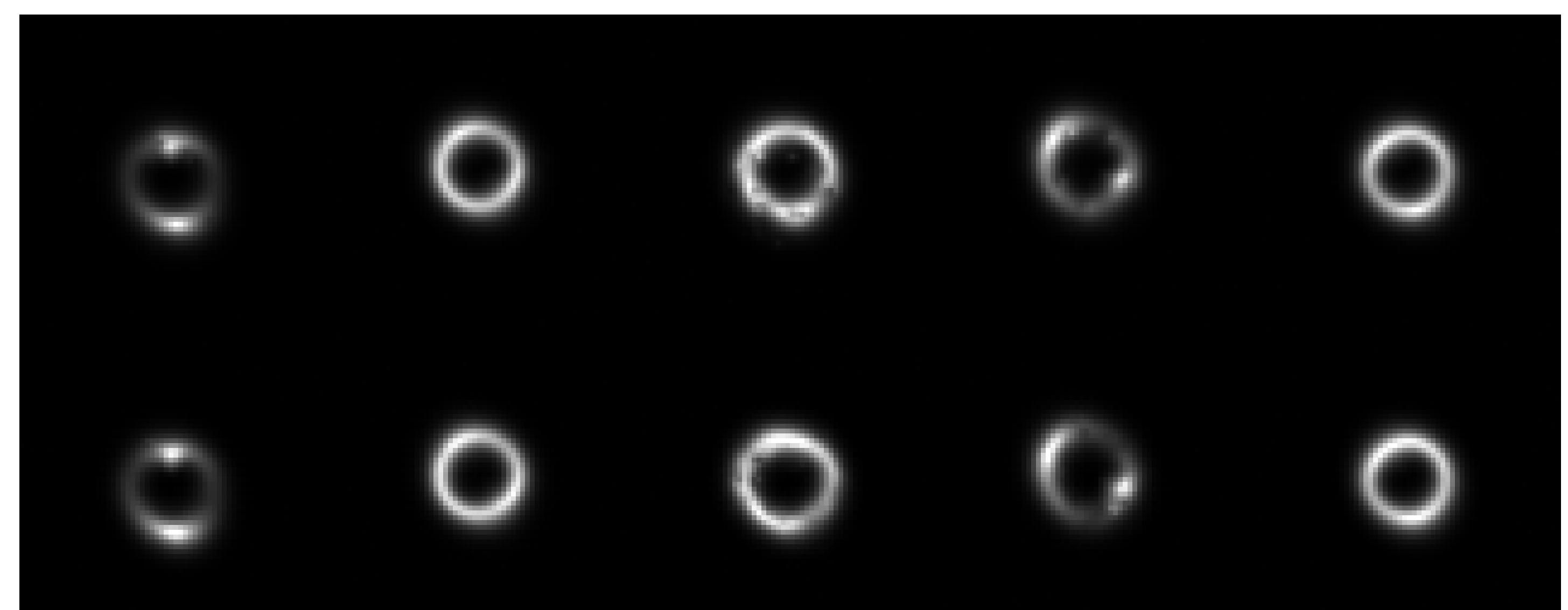


Figure 3. Comparison of real (top) and generated (bottom) images from FlowLensing, both sharing the same continuous lensing parameters.

Conclusion

- Summary:** FlowLensing enables scalable gravitational lensing simulation with **200**× speedup over classical methods while maintaining high fidelity and physical consistency across dark matter models.
- Future Work:** Integrate lensing equations directly into architecture for deeper physical fidelity and benchmark against GANs and VAEs to explore generative approach trade-offs.

For more details, please refer to the full paper: [arXiv:2510.07878](https://arxiv.org/abs/2510.07878)

