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Figure 1. Overview of the FlowLensing architecture.

Gravitational lensing simulations are computationally expensive, with classical ray-tracing methods taking prohibitively long for large-scale dark matter studies. FlowLensing is a flow-matching model with
Diffusion Transformer backbone that generates high-fidelity lensed images 200× faster than traditional simulators. It handles both discrete dark matter classes and continuous lensing parameters while
maintaining physical consistency critical for cosmological surveys.

Overview

Background: Gravitational lensing is a powerful probe for dark matter substructure studies.
Accurate analysis requires large-scale simulations, yet traditional ray-tracing methods are
prohibitively slow for statistical studies involving complex dark matter models.

Challenges: Classical simulators like lenstronomy take excessive time for intensive dark matter
models. Existing deep learning approaches struggle with fidelity, conditioning control, or require
long sampling chains leading to slow inference.

Objective: Introduce and evaluate FlowLensing, a flow-matching model with Diffusion
Transformer backbone, designed to generate physically consistent lensed images from
astrophysical parameters while achieving 200× speedup over classical methods.

Dataset

Dark Matter Classes (Discrete): 89,104 simulated 64×64 grayscale lensing images across
three regimes—(1) CDM without substructure, (2) CDM with truncated NFW subhalos, and
(3) Axionic dark matter (m≈10−23 eV) represented via vortex-like defects.

Lensing Parameters (Continuous): 30,000 CDM-only images conditioned on continuous
variables: Einstein radius (θE), source coordinates (x, y), and subhalo mass function slope (β).
These enable regression-based control and interpolation of physical properties.

Simulation Setup: All images generated using lenstronomy, reproducing Euclid-like survey
conditions. Each host lens follows a sheared isothermal ellipse profile, and each source uses a
Sersic light profile. Datasets include instrumental effects, PSF convolution, and pixel noise to
emulate realistic observations.

Normalization: Images are preprocessed through contrast stretching, mean-centering, and
rescaling to [−1, 1] to stabilize transformer training, improve gradient flow, and ensure
consistent dynamic range across lensing configurations.

Methodology

FlowLensing implements a compact, diffusion-transformer–based flow matching model tailored
for strong gravitational lensing simulation. Instead of iterative stochastic denoising, it learns a
direct, continuous mapping from Gaussian noise to astrophysically realistic lensed images.

xt = (1− t)x0 + tx1, v∗(xt, t) = x1 − x0, (1)

where x0 ∼ N (0, I) and x1 ∼ pdata are noise and real lensing samples. The model predicts the
velocity field vθ(xt, t, c) and is trained by minimizing the mean squared error:

L(θ) = Ex0,x1,t,c

[
∥vθ(xt, t, c)− (x1 − x0)∥2

]
. (2)

Conditioning: Two conditioning modes were implemented: (i) Discrete — dark matter classes
(CDM, Axion, NoSubstructure) embedded via a learned lookup table, and (ii) Continuous —
lensing parameters (θE, x, y, β) projected through an MLP into the transformer’s latent space.
Classifier-free guidance with dropout probability pdrop = 0.1 was used for controllable generation:

ṽθ = vθ(xt, t, ∅) + w
(
vθ(xt, t, c)− vθ(xt, t, ∅)

)
, (3)

where w is the guidance scale.
Outcome: This setup enables physically consistent, high-fidelity image synthesis with over 200×
speedup compared to Lenstronomy/PyAutoLens, preserving substructure information crucial for
dark matter inference.

Figure 2. Illustration of the flowmatching framework showing the continuoustrajectories between data and noisesamples.
Figure adapted from Meta AI’s flow matching repository.

Results & Discussion

Metrics: MSE, PSNR, SSIM for image quality; FID for distribution matching; Classification
AUC and Regression R² for physical consistency.

Baseline: DDPM with U-Net backbone (1000 NFE steps).

FlowLensing achieves 200× speedup (0.36s vs 4.8s per sample) with superior image
quality (PSNR: 68.68, SSIM: 0.9993).

Perfect classification (AUC: 1.00) for all dark matter classes and strong parameter regression
(R²: 0.833-0.945) demonstrate physical consistency.

Table 1. Reconstruction Quality

Model MSE FID Latency (s) PSNR SSIM
DDPM 0.0110 87.31 4.8 30.78 0.8870
FlowLensing 0.0108 1.61 0.36 68.68 0.9993

Table 2. Downstream Evaluation (AUC / R2)

AUC R2

Class Ours Base x y β θE

CDM 1.00 0.92 0.945 0.940 0.833 Const. (1.281)

Axion 1.00 0.91

No Substructure 1.00 0.75

Figure 3. Comparison of real (top) and generated (bottom) images from FlowLensing, both sharing the same
continuous lensing parameters.

Conclusion

Summary: FlowLensing enables scalable gravitational lensing simulation with 200×
speedup over classical methods while maintaining high fidelity and physical consistency across
dark matter models.

Future Work: Integrate lensing equations directly into architecture for deeper physical fidelity
and benchmark against GANs and VAEs to explore generative approach trade-offs.

For more details, please refer to the full paper: arXiv:2510.07878

Machine Learning and the Physical Sciences December 6th, 2025 hamees@smallest.ai

https://github.com/facebookresearch/flow_matching
https://arxiv.org/abs/2510.07878
mailto:myemail@exampl.com

