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1. Motivation: KV-Cache as the Real Bottleneck
Large language models repeatedly read and write a growing key–value (KV) cache during autoregressive decoding. As context length 
increases, memory bandwidth—not compute—becomes the dominant bottleneck. Existing KV compression approaches typically assume: 
(1) a fixed compression ratio for all layers; (2) ignoring data-dependent low-rank structure; (3) ignoring layer-wise heterogeneity

5. Layer-Wise Rank Dynamics
Layer-wise NER for key and value 
representations in Qwen3-4B, evaluated 
on five datasets and three VisR-Bench 
languages. The pronounced non-
uniformity across layers demonstrates 
substantial heterogeneity in intrinsic rank 
structure. Consequently, uniform 
compression ratios are fundamentally 
suboptimal: they risk degrading high-rank 
layers disproportionately while failing to 
exploit the considerable low-rank structure 
present in earlier and mid-depth layers.

4. Findings: Systematic KV Compressibility Patterns

Key results:
• Keys are consistently more 

compressible than values
• Language effects > domain 

effects
• Older models (e.g., LLaMA-2) 

show lower NER → easier to 
compress

• Low-resource languages exhibit 
rank collapse (e.g., Arabic)

Average NER of keys and values across all layers of 7 models on diverse datasets

2. Method: Dataset-Level Rank Analysis via Incremental SVD

While SVD yields the optimal low-rank approximation of a 
matrix, most prior KV-cache compression methods apply SVD 
only to the projection weights—minimizing

which does not minimize the true compression error of the KV-
cache, 

The latter depends on the data-induced activations X and 
therefore requires a data-dependent formulation. 
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||Wdown ·Wup →Wk||F

<latexit sha1_base64="XUngnkydVzXSVAYuEY4+bKskpZg=">AAACGnicbVDLSgMxFM3UV62vUZdugkVwY5kRqS6LgrisYB/QDkMmk7ahmWRIMkqZ9jvc+CtuXCjiTtz4N6btFLT1QuA87uXmniBmVGnH+bZyS8srq2v59cLG5tb2jr27V1cikZjUsGBCNgOkCKOc1DTVjDRjSVAUMNII+ldjv3FPpKKC3+lBTLwIdTntUIy0kXzbHQ4bfhqKBz6CbRwKDQ1N4hlpwhMj9GdsOPSvfbvolJxJwUXgZqAIsqr69mc7FDiJCNeYIaVarhNrL0VSU8zIqNBOFIkR7qMuaRnIUUSUl05OG8Ejo4SwI6R5XMOJ+nsiRZFSgygwnRHSPTXvjcX/vFaiOxdeSnmcaMLxdFEnYVALOM4JhlQSrNnAAIQlNX+FuIckwtqkWTAhuPMnL4L6acktl8q3Z8XKZRZHHhyAQ3AMXHAOKuAGVEENYPAInsEreLOerBfr3fqYtuasbGYf/Cnr6wcSaaA+</latexit>

||Wdown ·Wup ·X →Wk ·X||F

3. Metric: Normalized Effective Rank (NER)
• Measures the intrinsic dimensionality of K/V activations
• Strongly correlates with perplexity degradation under truncation
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We use an incremental SVD to compute the singular value spectrum of 
key/value activations for a layer, directly over large datasets. This 
produces the optimal low-rank approximation of the KV-cache itself 
and allows us to use the resulting singular values to estimate the 
compressibility of each layer’s KV-cache.


