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The rapid evolution of large language models (LLMs) and the real
world has outpaced the static nature of widely used evaluation
benchmarks, raising concerns about their reliability for evaluating

LLM factuality.
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LLMs that provide up-to-date and factually correct answers may be
unfairly penalized when evaluated against outdated benchmarks.
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If Wikipedia search fails, we will switch to Google search

Stage1: Wikipedia Search

» Retrive related information from Wikipedia

> Extractfinal answers from retrieved information

Stage2: Google Search

» Decompose questions into sub-goals

» Run Google search of sub-goals

» Extract key facts and temporal metadata

> Decide whether need further search
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:l RQ1: To what extent do widely used static

't benchmarks contain outdated factual answers

| compared to current real-world facts?
iAns: A Considerable Portion of the Benchmarks Are
i Outdated
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Citation Trend of Popular Benchmarks (2017-2025.10)

Dataset
—— TriviaQA
BoolQ
NaturalQuestion
TruthfulQA
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2017 2018 2019 2020 2021 2022 2023 2024 2025.10.05
Year

Dataset TriviaQA BoolQQ NaturalQuestion TruthfulQA SelfAware |
Release Time July 2017 May 2019 July 2019 May 2022 July 2023 |
Dataset Drift Score (%) 37.05 63.78 24.19 36.88 28.26 |
LLM (Release Time) Evaluation Misleading Rate (%)
Llama-2-7B-chat-hf (Jul 2023) 14.74 0.11 10.28 11.25 15.22
Llama-3-8B-Instruct (Apr 2024) 11.16 8.22 10.28 8.13 19.57
Llama-3.1-8 B-Instruct (Jul 2024) 12.35 7.56 11.40 9.38 14.49
Llama-3.2-3B-Instruct (Sep 2024) 9.16 8.67 9.52 10.63 10.51
Ministral-8B-Instruct-2410 (Sep 2024) 18.33 16.67 14.04 14.38 15.22
GPT-40-mini-2024-07-18 (Jul 2024) 19.92 17.11 24.06 23.13 22.10
Qwen2.5-7B-Instruct (Sep 2024) 10.76 14.44 12.41 19.38 16.67
Qwen2.5-14B-Instruct (Sep 2024) 13.55 16.00 16.04 16.88 22.46
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The outdated
benchmarks can
mislabel factually
correct model
responses.

The present LLMs are
more alighed with real-
world facts than with
gold answers in the
benchmarks.

The usage of static
benchmarks with
outdated information is
increasing.

The outdated contexts
amplify the temporal

misalignment.
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