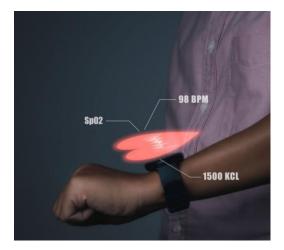
MAESTRO: Adaptive Sparse Attention and Robust Learning for Multimodal Dynamic Time Series

Payal Mohapatra Yueyuan Sui Akash Pandey Stephen Xia Qi Zhu Northwestern University

Time Series Data are Ubiquitous

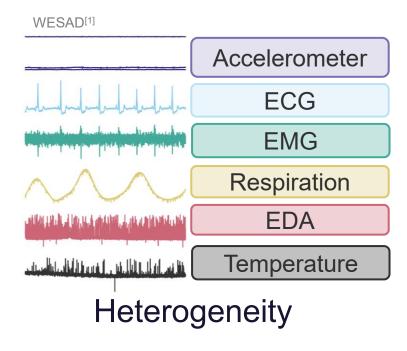


Clinical Applications

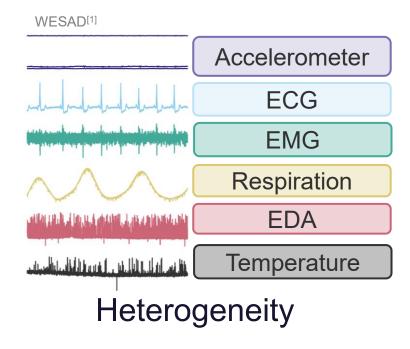
Environment Monitoring

Lifestyle Enhancement

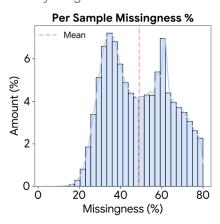
Challenges in Time Series Data Analyses



Challenges in Time Series Data Analyses

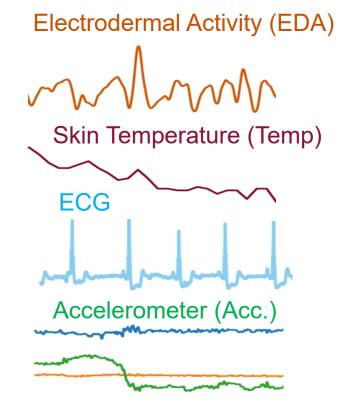


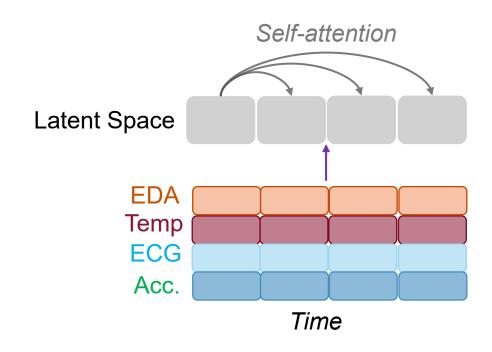
40M hours of day-long multimodal sensor data from LSM-2[2]

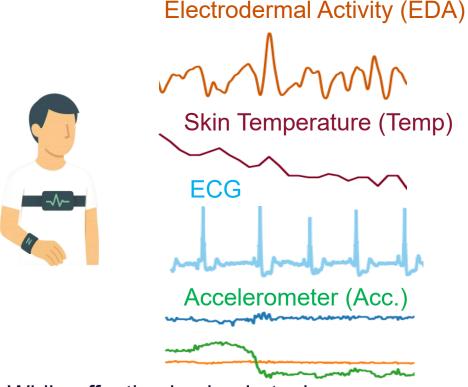


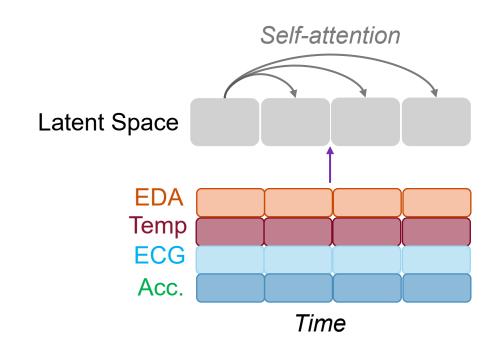
^[1] Wearable Stress and Affect Detection, 2018

^[2] LSM-2: Learning from Incomplete Wearable Sensor Data, 2025



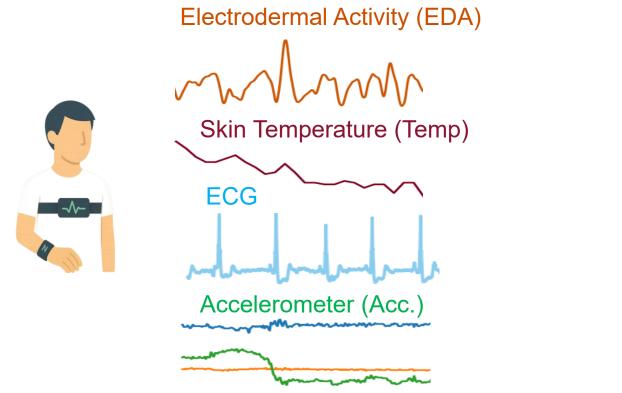


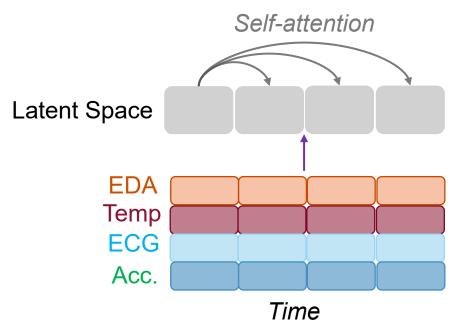




While effective in simple tasks:

- Does not model inherent heterogeneity
- Misses modeling inter-modal interactions effectively
- Cannot disentangle representation in case one modality is missing/corrupted.
- · Cannot handle different sequence length across modalities.



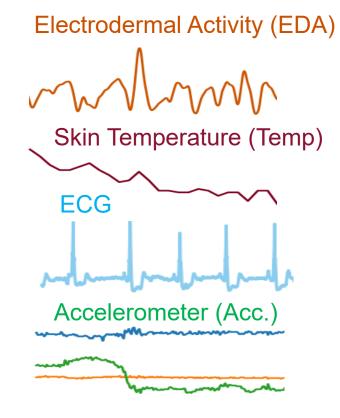


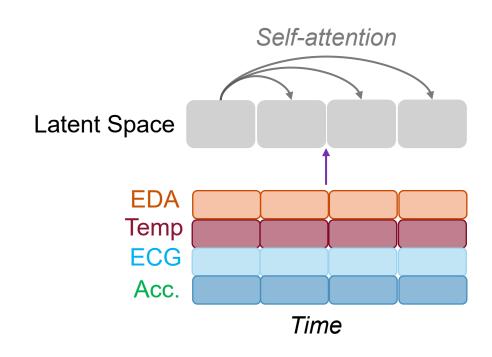
Another approach is sensor fusion, but it is highly application-specific and often heuristic.

For example, in heart rate monitoring from wearables, several proposals have been made in the literature, such as:

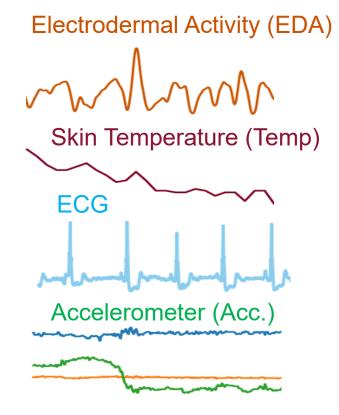
- early fusion using multi-wavelength photoplethysmography (PPG)¹,
- multi-site PPG², and
- late fusion with temperature³.

- [1] Meier & Holz (2024). Effect of wavelength on PPG reliability outdoors CISS.
- [2] Meier & Holz (2024). PPG accuracy across body locations and motion CISS.
- [3] Meier, Demirel & Holz (2024). WildPPG: Real-world long-duration PPG dataset NeurlPS.





Need to view as multimodal data instead of multivariate-time-series!



Generally, video, audio, and text representations are considered multimodal. However, even though time-series data are represented in the same numerical form, they can be highly heterogeneous.

Need to view as multimodal data instead of multivariate-time-series!

Considerations for Multimodal Real-world Time-series

- Need to identify primary modality[1].
- ^в→Assumption of high mutual information among modalities^[2, 3, 4].
- Pairwise interaction modeling [5, 6].

- Apriori of primary modality is not always guaranteed.
- Heterogenous modalities.
- Number of modalities can be greater than 10. Combinatorially expansive!

Random missingness due to sensor malfunction.

^[1] IMAGEBIND, CVPR 2023 (highlight paper)

^[2] VATT, Neurips 2021

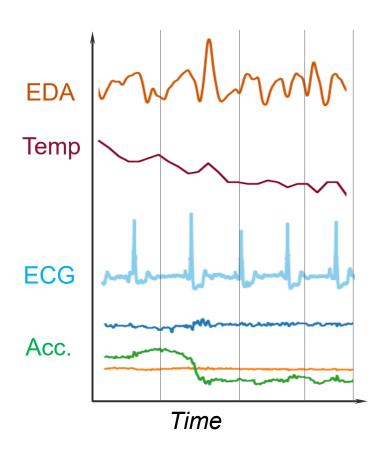
^[3] Factorized Contrastive Learning, Neurips 2023

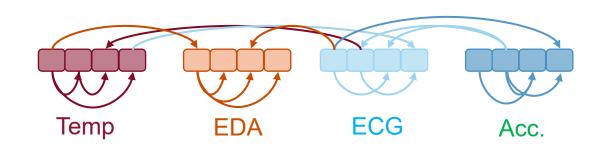
^[4] Multimodal Fusion Interactions, ICMI 2023

^[5] MULT, ACL 2020

^[6] MMOE, EMNLP 2024

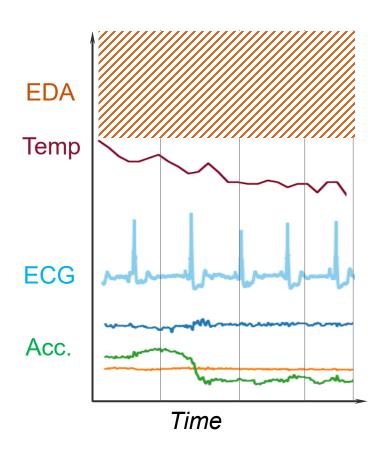
Cross-modal-attention for Multimodal Time-series

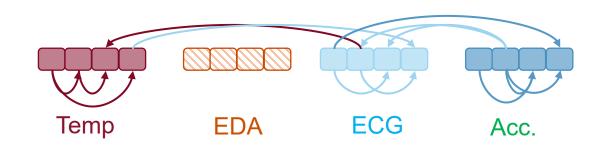




Cross-attention can allow learning task-relevant modality interaction.

Cross-modal-attention for Multimodal Time-series

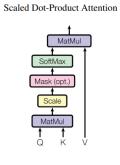




Cross-attention can allow learning from arbitrary modality combinations.

But applying Cross-modal-attention through Long Multimodal Time-series increases the computational complexity!

Canonical Self-Attention^[1]



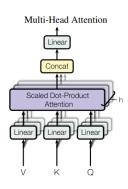


Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel.

$$\mathcal{A}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \mathtt{Softmax}\left(rac{\mathbf{Q}\mathbf{K}^{ op}}{\sqrt{d}}
ight)\mathbf{V}$$

Point-wise self-attention for a sequence length of L, has a quadratic computational complexity $\rightarrow \mathcal{O}(L^2)$

Consider M modalities each of sequence length L, then the computational complexity increases,

$$\mathcal{O}(M^2L^2)$$

But applying Cross-modal-attention through Long Multimodal Time-series increases the computational complexity!

Canonical Self-Attention^[1]

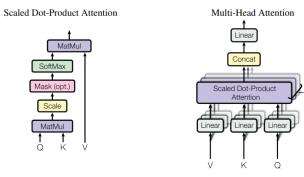


Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel.

$$\mathcal{A}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \mathtt{Softmax}\left(rac{\mathbf{Q}\mathbf{K}^{ op}}{\sqrt{d}}
ight)\mathbf{V}$$

Point-wise self-attention for a sequence length of L, has a quadratic computational complexity $\rightarrow \mathcal{O}(L^2)$

Consider M modalities each of sequence length L, then the computational complexity increases,

$$\mathcal{O}(M^2L^2)$$
 Sparse Attention $\mathcal{O}(MLlog(ML))$

Handling long time-series through sparse attention (Overview)

 Point-wise self-attention for a sequence length of L, has a quadratic computational complexity.

$$\mathcal{A}(\mathbf{Q},\mathbf{K},\mathbf{V}) = \mathtt{Softmax}\left(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{d}}\right)\mathbf{V}$$

$$\mathsf{ProbSparse\ Attention\ -}\,\mathcal{A}_s(\mathbf{Q},\mathbf{K},\mathbf{V}) = \mathtt{Softmax}\left(\frac{\bar{\mathbf{Q}}\mathbf{K}^{\top}}{\sqrt{d}}\right)\mathbf{V}$$

 Stacking N encoder layers further increases the memory consumption and computational complexity.

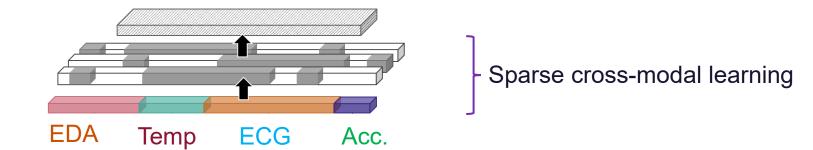
$$\hat{s} = s + \text{PE}_{\sin}(s)$$

$$\bar{s} = \mathcal{A}_s(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{Softmax}\left(\frac{\bar{\mathbf{Q}}\mathbf{K}^{\top}}{\sqrt{d}}\right)\mathbf{V}$$

$$\dot{s} = \bar{s} + \hat{s}$$

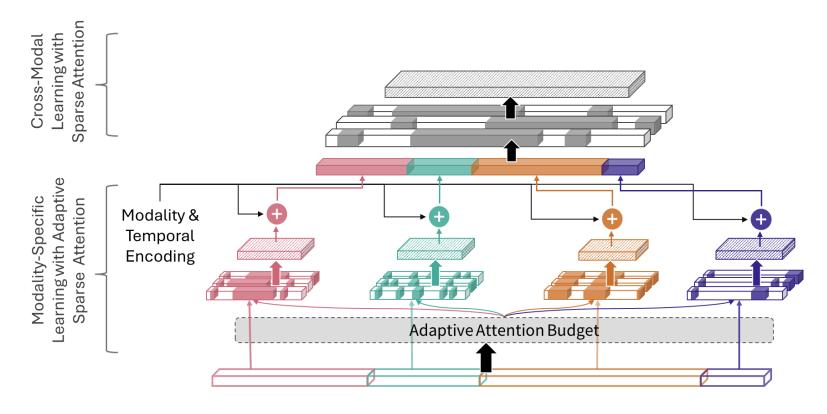
$$z = \text{distil}(\dot{s}) + \text{maxpool}(\hat{s})$$

Handling long multimodal time-series through sparse attention



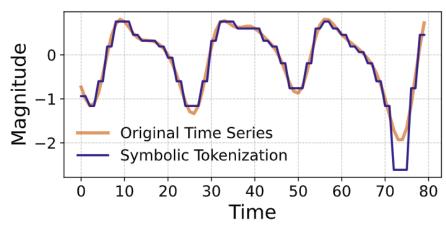
1. Adaptive Attention Budget per modality

Top-v queries in ProbSparse Computation : v is modulated by modality's relevance and availability



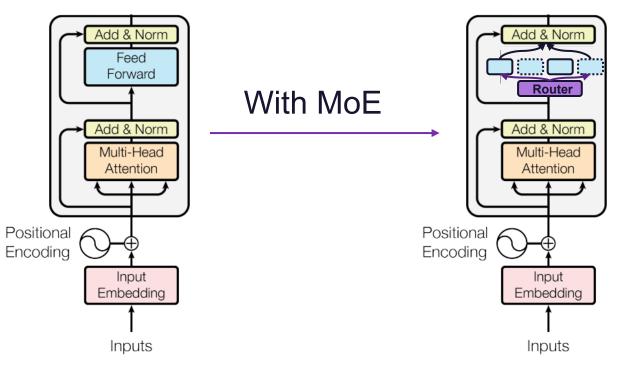
2. Symbolic Tokenization

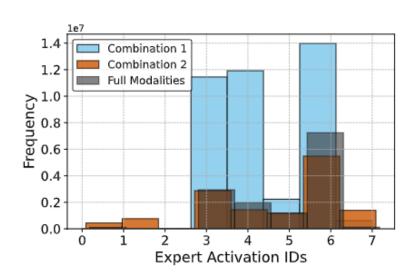
- 1. Converts time-series to discrete *symbols*^[1].
 - Has some nice properties guarantees a lower bound Euclidean distance between the symbolic time-series and the original time-series.
 - We extend it under some assumptions that this tokenization preserves multimodal relational structure.
- 2. We can reserve a symbol for *missing* data naturally.
- 3. We can compress the signal further reducing the sequence length.



3. Handling Missingness through Mixture-of-Experts

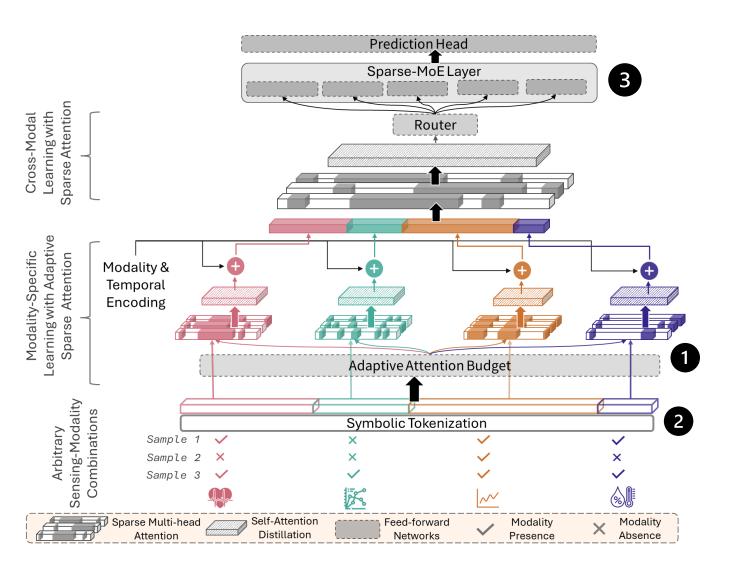
Instead of the fixed Feed-forward layer of the transformer, we can use a mixture of experts(MoE) for implicit modality specialization.

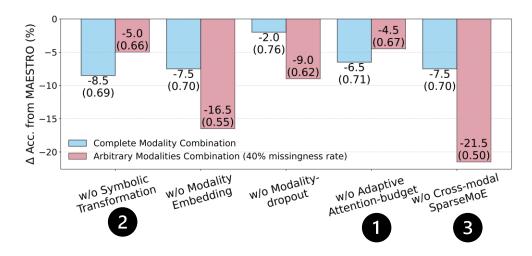




Vanilla Transformer^[1]

Overall MAESTRO Framework





Ablation of Key Components

Key Results : MAESTRO

Average of 4% performance improvement with complete and 8% with arbitrary set of modalities.



Computational Efficiency

Model	Acc. ↑	$\mathbf{MMAC}\downarrow$	$\mathbf{GFLOPs}\downarrow$	Params (M)
Multivariate Models iTransformer Transformer	$0.67_{\pm 0.05} \\ 0.63_{\pm 0.02}$		5.73 8.66	12.82 1.68
Multimodal Models FuseMoE MULT ShaSpec	$\begin{array}{c} 0.47_{\pm 0.41} \\ 0.60_{\pm 0.42} \\ 0.62_{\pm 0.51} \end{array}$	13324	13.05 26.65 9.11	0.67 3.71 216
MAESTRO - Full-Attn (Per-Modal) - Full-Attn (Cross-Modal) - All Full-Attention - All Full-Attention (no MoE)	$\begin{array}{c} 0.77_{\pm 0.04} \\ 0.80_{\pm 0.03} \\ 0.77_{\pm 0.07} \\ 0.75_{\pm 0.05} \\ 0.78_{\pm 0.04} \end{array}$	3769 3496 4205	6.13 7.54 6.99 8.42 8.78	1.39 1.40 1.39 1.39 1.39

Thank you.