

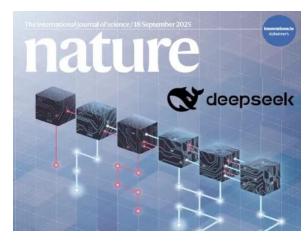
Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?

Yang Yue*, Zhiqi Chen*, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao Huang[⊠]

Presenter: Yang Yue

Tsinghua University

Background: LLM Reasoning



OpenAI o1

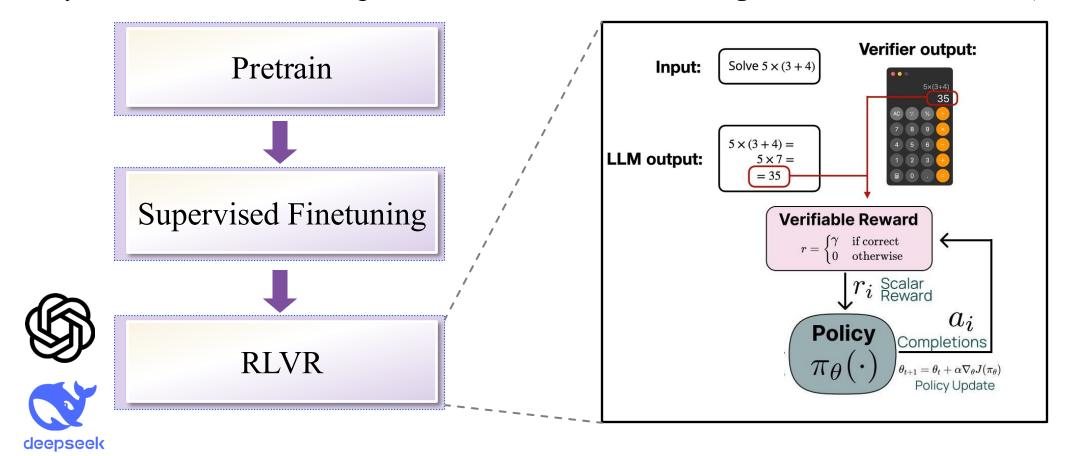
Deepseek-R1

Gemini Thinking

ICPC Programming Medal

Background: Reinforcement Learning with Verifiable Reward

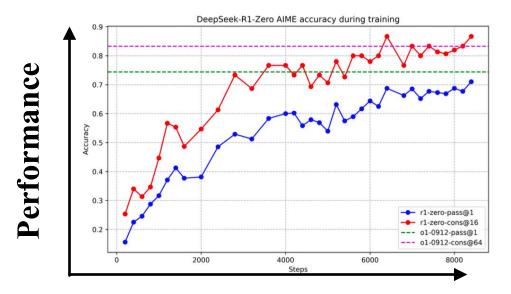
☐ The key to the success of reasoning models: Reinforcement Learning with Verifiable Reward (RLVR)



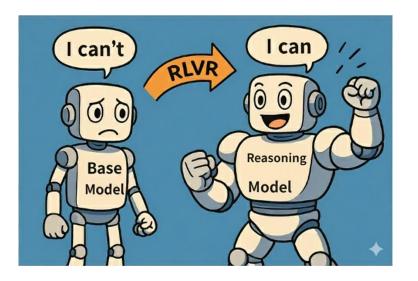
Background: Reinforcement Learning with Verifiable Reward

☐ Reinforcement Learning with Verifiable Reward (RLVR)

- Self-generated data; no need for human-annotated CoTs
- Significantly boost reasoning performance

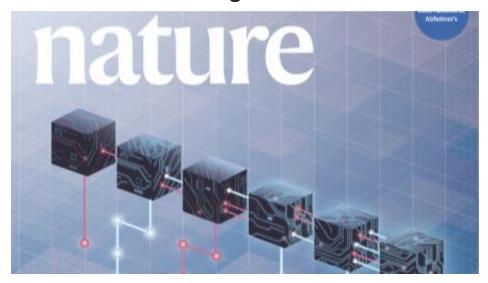


RLVR Training



Question

DeepSeek-R1 incentivizes reasoning in LLMs through reinforcement learning



AlphaGo's 37th move - a groundbreaking strategy that the agent discovered on its own

Question

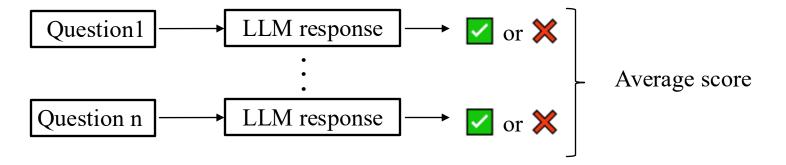
Have we reached the "AlphaGo Moment" for LLMs yet?

Does RLVR truly discover new reasoning paths beyond the base model?

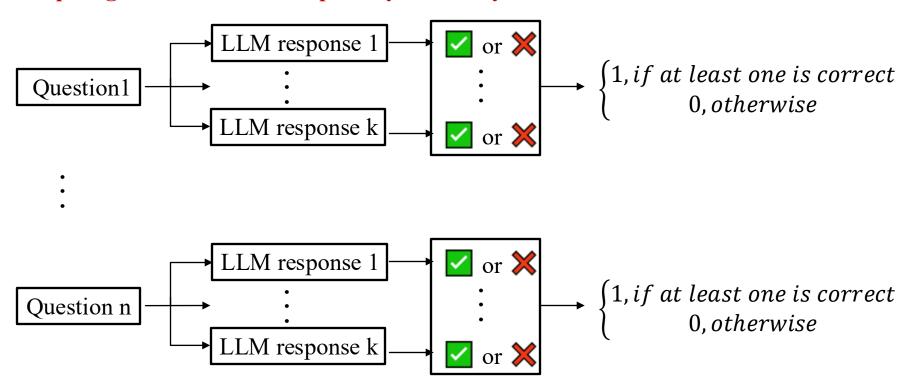
DeepSeek-R1 incentivizes reasoning in LLMs through reinforcement learning

AlphaGo's 37th - a groundbreaking strategy that the agent discovered on its own

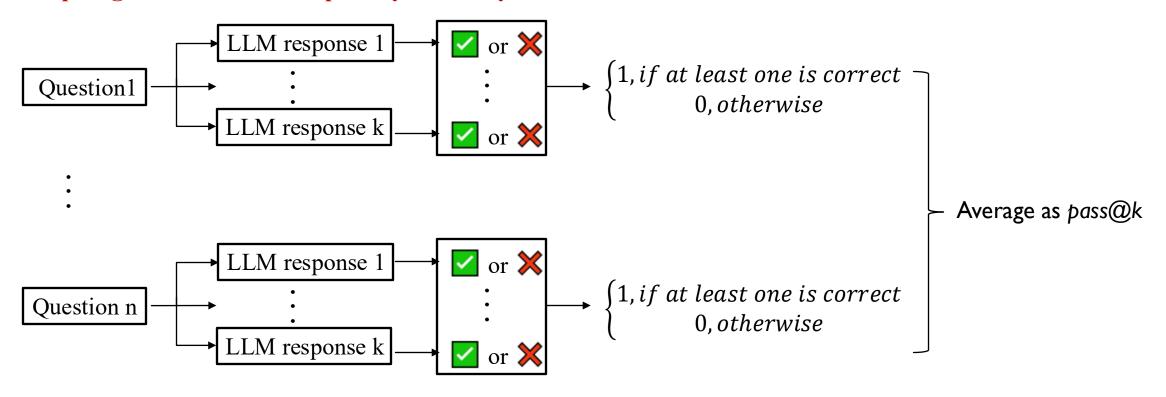
☐ Traditional metric for model reasoning performance: Avg@k measures average capability



- ☐ Traditional metric for model performance: Avg@k measures average capability
- We use pass@k to measure the capability boundary of models

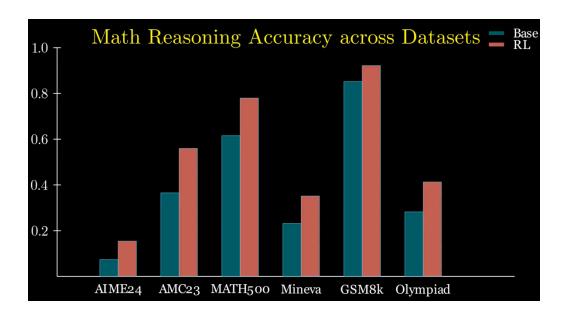


- ☐ Traditional metric for model performance: Avg@k measures average capability
- We use pass@k to measure the capability boundary of models

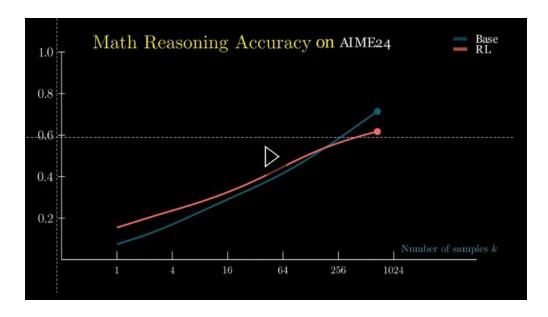


pass@k represents the proportion of problems in a dataset that the model can solve within k attempts.

□ Avg@k measures average capability



□ pass@k measures the capability boundary

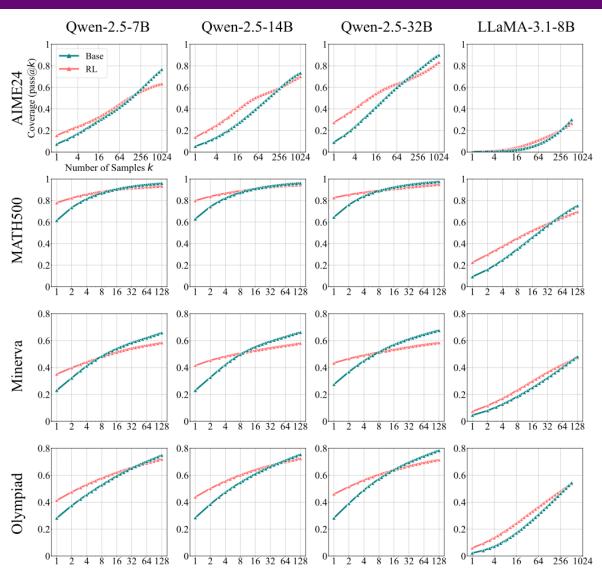


Surprisingly, the RLVR model underperforms the base model as k increases

RLVR's Effect on Reasoning Capacity Boundary

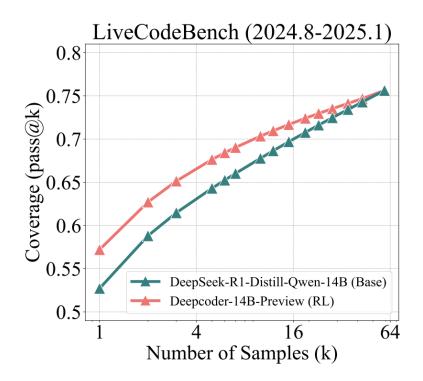
☐ Base models vs. RLVR models

- Families (Qwen, LLaMA, Mistral, ...)
- Scales (7B, 14B, 32B, 72B, ...)
- Algorithms (PPO, GRPO, Reinforce++, ...)
- Domains (math, code, visual reasoning)
- Benchmarks (AIME, MATH500, Minerva, ...)
- ☐ Consistently observed that
 - For large k, pass@k of RL models does *not* surpasses base models
 - The number of solvable problems does *not* increases after RLVR training.

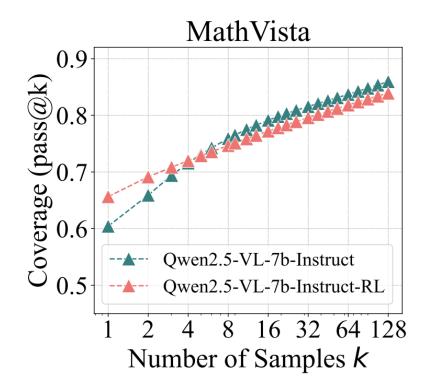


RLVR's Effect on Reasoning Capacity Boundary

□ Coding task

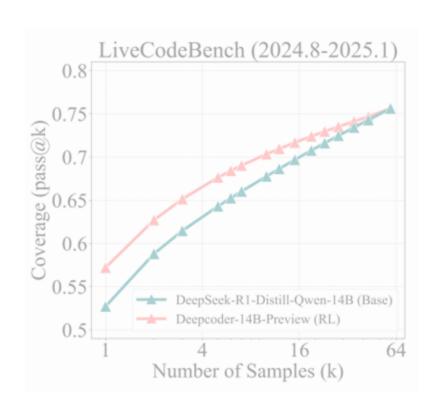


□ Visual reasoning task

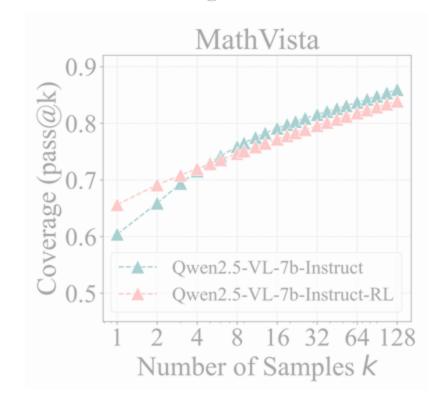


RLVR's Effect on Reasoning Capacity Boundary

□ Coding task



□ Visual reasoning task

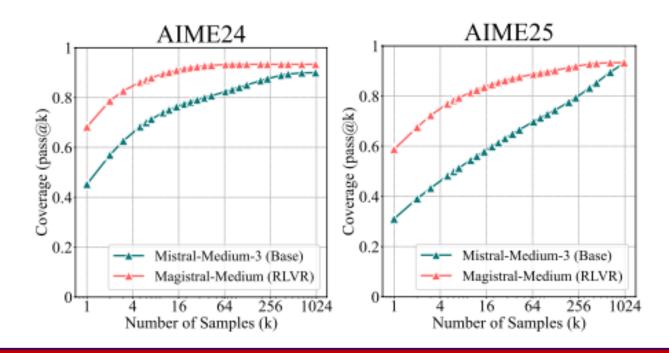


We try our best to rule out random guessing issue by:

- 1. Coding tasks
 - > pass all unit tests
- 2. Datasets such as Minerva
 - > answers with complex forms
- 3. Manually check a subset of CoTs for AIME

A preliminary experiment on model size scaling

- ☐ Magistral-medium (25.06)
 - ➤ A pure RLVR model
 - > near-frontier performance in reasoning



The conclusion currently holds for highly capable, near-frontier reasoning models

Solvable problem proportion analysis

➤ There exist some problems that base model can solve but RL model can't

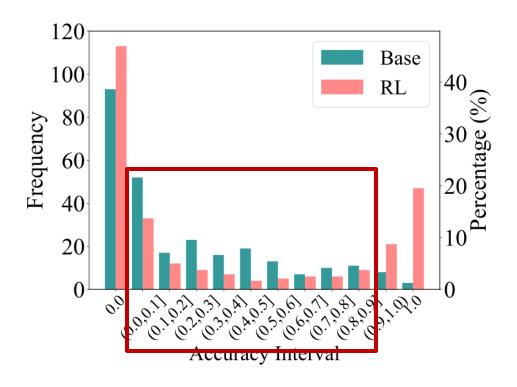
Base	SimpleRLZoo	AIME24	MATH500
✓	✓	63.3%	92.4%
✓	Х	13.3%	3.6%
X	✓	0.0%	1.0%
X	×	23.3%	3.0%

Solvable problem proportion analysis

- ➤ There exist many problems that base model can solve but RL model can't
- ➤ There are very few problems that RL model can solve but base model can't

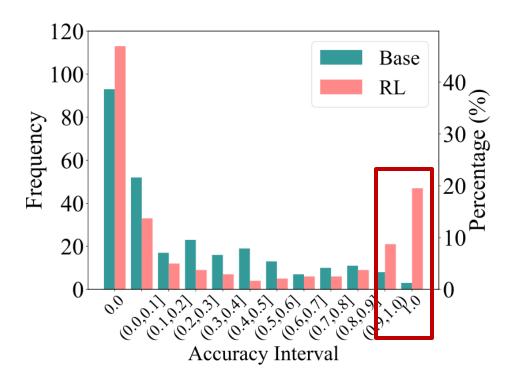
Base	SimpleRLZoo	AIME24	MATH500
✓	✓	63.3%	92.4%
✓	X	13.3%	3.6%
X	✓	0.0%	1.0%
X	Х	23.3%	3.0%

Accuracy distribution analysis



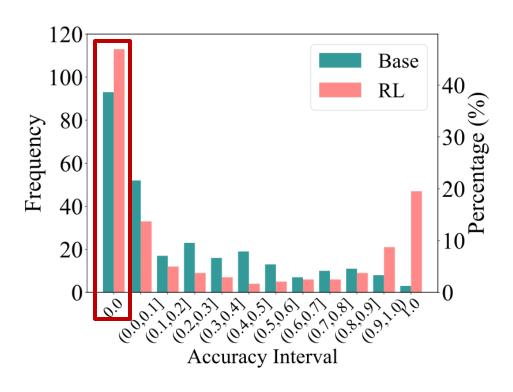
There exist many problems that base models can already solve, but only with low success rates (0 < accuracy < 0.9).

Accuracy distribution analysis



RLVR improves sample efficiency on these problems, raising accuracy to the 0.9–1.0 range.

Accuracy distribution analysis

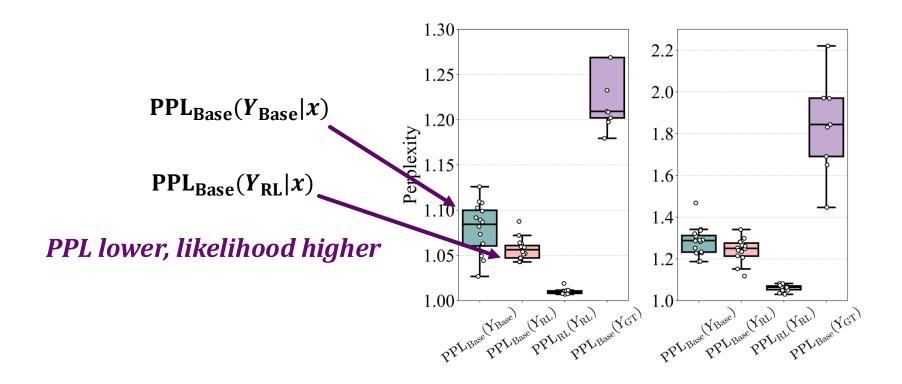


However, RL model failed on the problems where base model has accuracy 0

Current RLVR gains mainly come from improved sampling efficiency, and rarely expand reasoning boundary.

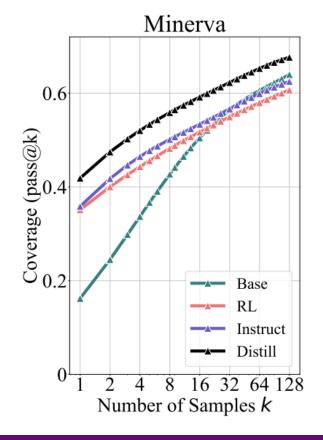
Perplexity analysis

- > Observation: Responses from RL model are not surprising to the base model.
 - > Responses from RL model already exist in the base model's distribution



RLVR v.s. Distillation

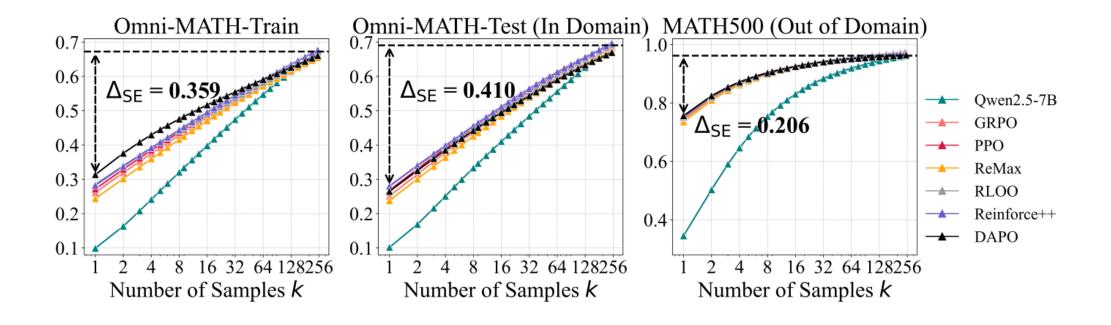
- > Observation: Distilled model consistently outperforms base model as k goes large
 - > Distillation expands reasoning by injecting new knowledge and reasoning patterns



Different RLVR Algorithms

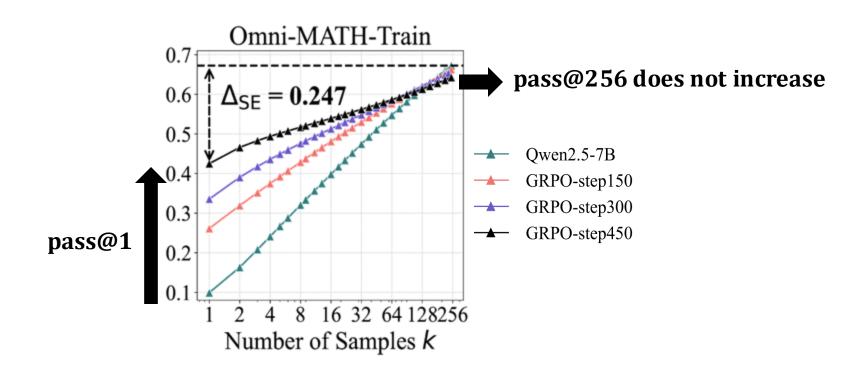
- > Observation 1: Algorithms have slightly different performance
- > Observation 2: remain far from optimal sampling efficiency

Define $\Delta_{SE} = Base\ pass@k - RL\ pass@1\ to\ measure\ RL\ model's\ sample\ efficiency$



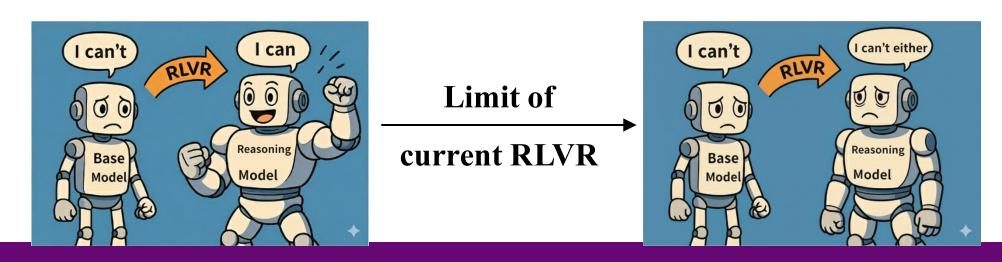
Asymptotic Effects of RL Training

☐ As RLVR training progresses



Summary

- Current RLVR in the open-source community may not yet deliver an "AlphaGo Moment" in LLMs
 - > RLVR is **highly useful in practice**: which mainly comes from the **improvements** of sample efficiency
 - > RLVR model is **bounded** by its base model
 - Fully unlock RL's potential to **discover new knowledge** / **reasoning strategies** remains an open challenge



Discussion: Why RLVR Has Limitations

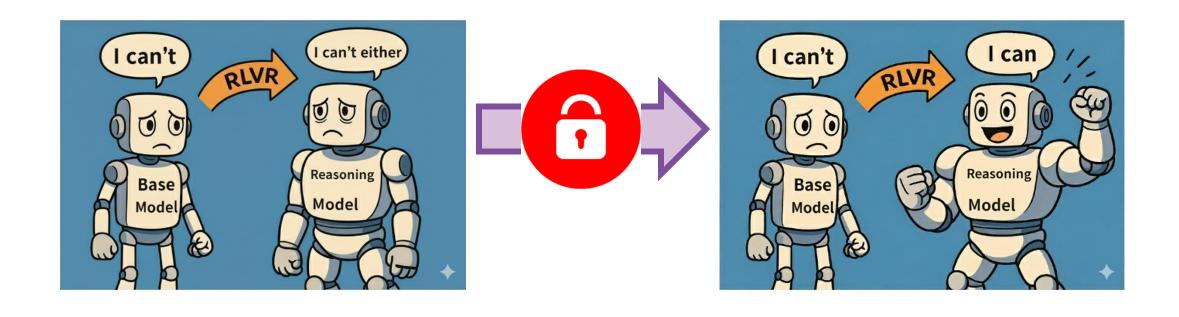
- ☐ Traditional RL can discover new strategies: AlphaGo's 37th move
- ☐ Key Differences (RL for Go vs. RLVR for LLMs)
 - **Vast Action Space**: $O(10^{768})$ vs. $O(10^{10,000})$
 - > Train from scratch vs. Pretrained Priors
 - > Pretrain prior guides exploration and make reward possible

Discussion: Why RLVR Has Limitations

- ☐ Traditional RL can discover new strategies: AlphaGo's 37th move
- ☐ Key Differences (RL for Go vs. RLVR for LLMs)
 - > Vast Action Space: $O(10^{768})$ vs. $O(10^{10,000})$
 - > Train from scratch vs. Pretrained Priors
 - > Pretrain prior guides exploration and make reward possible
- ☐ *Inability to explore new* in this vast action space
 - > Struggle to explore new patterns beyond prior due to:
 - Vast action space
 - Naïve exploration (token-level sampling)
 - Sparse reward

Discussion

How to unlock the potential of RL to discover new



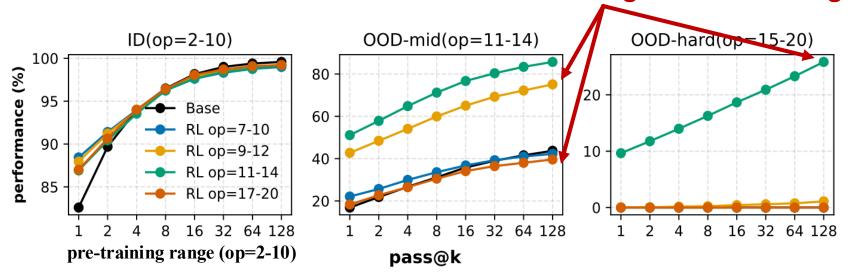
□ Workaround:

> Pretrain/SFT stages inject diversity, and then do RL

□ Potential Future Directions:

- > RL data/env & model scale up
 - > Larger models generalize reasoning patterns better
 - Train on diverse data to induce a natural curriculum; progressively learn and compose meta-skills

 RL data should target the model's edge of capability



Zhang, C., Neubig, G., & Yue, X. (2025). On the Interplay of Pre-Training, Mid-Training, and RL on Reasoning Language Models. arXiv:2512.07783.

- **□** Potential Future Directions:
 - > RL data/env & compute scale up
 - > Exploration mechanism
 - > Beyond inefficient sampling; evolve trajectories from past explorations (e.g., AlphaEvolve).

□ Potential Future Directions:

- > RL data/env & compute scale up
- > Exploration mechanism (i.e., AlphaEvolve)
- > Process reward & value network
 - > Give intermediate feedback before we get a complete solution

□ Potential Future Directions:

- > RL data/env & compute scale up
- > Exploration mechanism (i.e., AlphaEvolve)
- > Process reward & value network
- > Agent interaction with tools and external info
 - > rich input is needed for creation

- **□** Potential Future Directions:
 - > RL data/env & compute scale up
 - > Exploration mechanism (i.e., AlphaEvolve)
 - > Process reward & value network
 - > Agent interaction with tools and external info

towards unlocking full potential of RL

Thanks to all the collaborators

Yang Yue (乐洋) Seeking an internship in North America

Zhiqi Chen Undergrad Seeking summer research

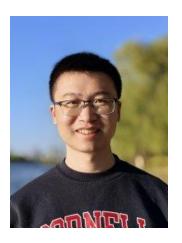
Rui Lu
Ph.D.
On the job market

Andrew Zhao

Zhaokai Wang

Yang Yue (乐阳)

Shiji Song



Gao Huang

Thanks for your listening!

See our web for more discussions and Q&A

https://limit-of-rlvr.github.io

