

Convex Potential Mirror Langevin Algorithm for Efficient Sampling of Energy-Based Models

Zitao Yang¹, Amin Ullah², Shuai Li³, Fuxin Li⁴, Jun Li¹

¹Fudan University ²Boeing Research and Technology ³University of Bonn ⁴Oregon State University

 $\verb"yangzt210m.fudan.edu.cn"$

NeurIPS 2025

- 1 Introduction
- 2 Background
- 3 Proposed Method: CPMLA
- 4 Theoretical Analysis
- 5 Experiments
- 6 Conclusion

Motivation: Challenges in EBM Sampling

- Energy-Based Models (EBMs) offer flexibility in modeling complex distributions.
- Applications: 3D recognition, image restoration, protein folding.

Motivation: Challenges in EBM Sampling

- Energy-Based Models (EBMs) offer flexibility in modeling complex distributions.
- Applications: 3D recognition, image restoration, protein folding.
- Challenge: Sampling relies on MCMC (e.g., Langevin Dynamics), which is often slow and can get stuck, especially in high dimensions or with complex energy landscapes.
- Existing methods to improve sampling still face issues like non-mixing.

3 / 18

Motivation: Challenges in EBM Sampling

- Energy-Based Models (EBMs) offer flexibility in modeling complex distributions.
- Applications: 3D recognition, image restoration, protein folding.
- Challenge: Sampling relies on MCMC (e.g., Langevin Dynamics), which is often slow and can get stuck, especially in high dimensions or with complex energy landscapes.
- Existing methods to improve sampling still face issues like non-mixing.
- Goal: Develop a more efficient and reliable sampling algorithm for EBMs.

- 1 Introduction
- 2 Background
- 3 Proposed Method: CPMLA
- 4 Theoretical Analysis
- 5 Experiments
- 6 Conclusion

Background: EBMs and Mirror Langevin Dynamics

Energy-Based Models (EBMs)

- Define probability density via an energy function $f_{\theta}(x)$: $p_{\theta}(x) = \frac{1}{Z(\theta)} \exp(f_{\theta}(x)).$
- Training involves MCMC sampling (e.g., Langevin) to approximate gradients.

Background: EBMs and Mirror Langevin Dynamics

Energy-Based Models (EBMs)

- Define probability density via an energy function $f_{\theta}(x)$: $p_{\theta}(x) = \frac{1}{Z(\theta)} \exp(f_{\theta}(x)).$
- Training involves MCMC sampling (e.g., Langevin) to approximate gradients.

Mirror Langevin Dynamics (MLD)

- Generalizes Langevin dynamics to non-Euclidean geometries using a mirror map ∇G derived from a convex potential G.
- Can accelerate convergence and adapt to data geometry.
- Limitation: Conventional MLD uses fixed mirror maps, which struggle with complex data manifolds.

- 1 Introduction
- 2 Background
- 3 Proposed Method: CPMLA
- 4 Theoretical Analysis
- 5 Experiments
- 6 Conclusion

CPMLA: Convex Potential Mirror Langevin Algorithm

Key Idea: Use a *dynamic*, learnable mirror map within MLD for EBM sampling.

- Mirror Map ∇G_{ϑ} : Implemented using Convex Potential Flow (CP-Flow).
- CP-Flow uses Input Convex Neural Networks (ICNNs) to guarantee convexity.
- Learns optimal transport map, capturing data geometry.

7 / 18

CPMLA: Convex Potential Mirror Langevin Algorithm

Key Idea: Use a *dynamic*, learnable mirror map within MLD for EBM sampling.

- Mirror Map ∇G_{ϑ} : Implemented using Convex Potential Flow (CP-Flow).
- CP-Flow uses Input Convex Neural Networks (ICNNs) to guarantee convexity.
- Learns optimal transport map, capturing data geometry.
- Cooperative Learning: Jointly train the EBM (f_{θ}) and the dynamic mirror map (∇G_{θ}) .
 - EBM learns energy function using samples from CPMLA.
 - CP-Flow learns geometry using real data and EBM samples.
 - Creates a virtuous cycle of improvement.

7 / 18

CPMLA: Algorithm Overview

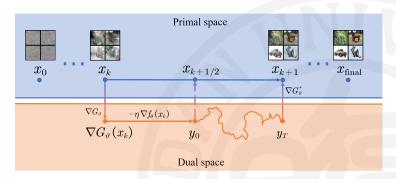


Figure: Overview of CPMLA sampling: Alternating updates between primal (image) and dual (geometry) spaces using the dynamic mirror map ∇G_{θ} and EBM gradients ∇f_{θ} .

- 1 Introduction
- 2 Background
- 3 Proposed Method: CPMLA
- 4 Theoretical Analysis
- 5 Experiments
- 6 Conclusion

9 / 18

Theoretical Analysis: Convergence Guarantee

We provide the *first* convergence analysis for MLD with deep neural network mirror maps.

Theorem (Convergence of CPMLA (Informal))

Under standard assumptions (Mirror LSI, Self-Concordance, Relative Lipschitz/Smoothness), CPMLA achieves:

- **Exponential Convergence:** The distribution of samples ρ_t converges exponentially fast to the target distribution p_{data} in Total Variation distance.
- Vanishing Bias: The bias approaches zero as the step size $h \rightarrow 0$.
- Accounts for approximation errors from both the EBM (δ_2) and CP-Flow (δ_3) networks.

Supports the efficiency and reliability of CPMLA in practice.

- 1 Introduction
- 2 Background
- 3 Proposed Method: CPMLA
- 4 Theoretical Analysis
- 5 Experiments
- 6 Conclusion

Introduction Background Proposed Method: CPMLA Theoretical Analysis Experiments Conclusio

Experiments: Toy Example - Eight Gaussians

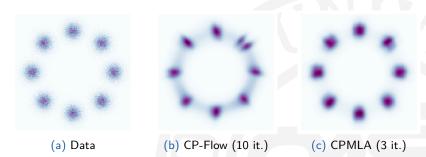


Figure: CPMLA efficiently captures the target distribution, matching CP-Flow's quality in fewer iterations.

Demonstrates faster convergence on synthetic data.

4 D > 4 B > 4 B > 4 B > 1 B | 90 0

Experiments: Image Generation Quality (CIFAR-10)

Evaluated on CIFAR-10, SVHN, CelebA (32x32).

Model type	Models	FID↓
Flow+EBM	EBM-FCE CoopFlow (T=30)	37.30 21.16
CPMLA (Ours)	CPMLAprt (T=20) CPMLA (T=30)	20.85 21.09
Score-Based GAN	NCSN++ StyleGAN2-ADA	2.20 2.92

Note: Lower FID is better. CPMLA outperforms prior EBM+Flow methods. Comparison to other model classes (Score, GAN) shows EBMs becoming more competitive.

(c) CelebA

Experiments: Efficiency vs. CoopFlow (CIFAR-10)

CPMLA demonstrates superior efficiency compared to CoopFlow:

Inference Speed & Quality:

- Achieves lower FID (20.85 vs 21.16).
- Uses fewer MCMC steps (T=20 vs T=30).
- Requires less wall-clock time (15.92s vs 16.84s / 1k images).

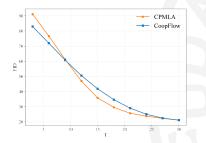


Figure: Faster FID improvement per step.

Parameter Efficiency:

- EBM part size identical (17.13M).
- Flow part: CPMLA 0.26M vs. CoopFlow 28.78M.
- Better results with $\sim 0.9\%$ flow params.

Training Efficiency:

- Faster overall training due to memory efficiency (larger batches possible).
- 10.5h vs 38h est. (CIFAR-10, 24GB VRAM).

Introduction Background Proposed Method: CPMLA Theoretical Analysis

Conclusion

Experiments: Image Inpainting (CelebA)

Demonstrates applicability to conditional generation tasks.

Figure: CPMLA successfully inpaints masked regions on CelebA images over optimization iterations (left to right), compared to masked and original images (last two columns).

- 1 Introduction
- 2 Background
- 3 Proposed Method: CPMLA
- 4 Theoretical Analysis
- 5 Experiments
- 6 Conclusion

Conclusion

- Introduced CPMLA, a novel algorithm designed for efficient EBM sampling using a dynamic mirror map based on CP-Flow.
- Key Features for Efficiency:
 - Adapts sampling geometry to the data manifold, potentially speeding up exploration.
 - Achieves exponential convergence with vanishing bias (theoretically proven for DNNs), supporting its reliability.
- Results: Demonstrated significant improvements in sampling efficiency (time, parameters, training throughput) compared to related EBM methods on benchmark datasets. Showcased strong performance in image generation, reconstruction, and inpainting.
- CPMLA offers a principled and highly performant approach to EBM sampling, enhancing the practicality of EBMs for complex generative tasks.

Thank You

For further questions or discussion, please contact:

yangzt210m.fudan.edu.cn