

Reproducibility Study: Equal Improvability A New Fairness Notion Considering the Long-Term Impact

Berkay Chakar

Amina Izbassar

Mina Janicijevic

Jakub Tomaszewski

Motivation

- Most of existing fairness notions only consider immediate fairness, without taking into account the equal improvement possibility of the members of the different groups.
- In contrast, Equal Improvability (EI) is an effort-based fairness notion that concerns itself with long-term fairness.
- Real world applications could be found in areas where the group members can improve their features and be re-labelled, e.g. loan approval, college admissions.

Ŵ

Equal Improvability

Group 0's rejected samples are much closer to the boundary than Group 1 (less effort to cross the boundary)

Disparity in Improvability (unfairness)

Image Source: Guldogan et al, 2023

Equal Improvability

Effort-based fairness notion that aims to balance the potential acceptance rates for rejected applicants across various groups, given a fixed amount of effort.

Equal Improvability Penalty

UNIVERSITEIT VAN AMSTERDAM

Ň

$$\min_{f \in \mathcal{F}} \left\{ (1-\lambda) \frac{1}{N} \sum_{i=1}^{N} \ell(y_i, f(x_i)) + \lambda U_{\delta} \right\}$$

• Covariance-based penalty: $(Cov(z, \max_{\|\Delta \mathbf{x}_I\| < \delta} f(\mathbf{x} + \Delta \mathbf{x}) | f(\mathbf{x}) < 0.5))^2$

• KDE-based penalty: |*KDE*(*EI Disparity*)|

• Loss-based penalty: $\sum_{z \in \mathcal{Z}} \left| \frac{1}{|I_{-,z}|} \sum_{i \in I_{-,z}} \ell \left(1, \max_{\|\Delta \mathbf{x}_{I_i}\| \le \delta} f(\mathbf{x}_i + \Delta \mathbf{x}_i) \right) - \sum_{z \in \mathcal{Z}} \frac{I_{-,z}}{I_{-}} \tilde{L}_z \right|$

Claims of the original paper

Claim 1: A classifier obtained by each of the three proposed EI ensuring methods, has a significantly smaller EI disparity value than the ERM (Empirical Risk Minimization) approach and a comparable error.

Claim 2: Most existing methods have an adverse effect on long-term fairness, while El continues to enhance it.

Claim 3: The introduced methods of achieving Equal Improvability prevent an overparametrized classifier from overfitting the data.

Experimental setup - Datasets

Datasets	Samples	Classes	Sensitive attrs.	
Synthetic	20,000	2	1	
German Statlog Credit	1,000	2	1 & 2	
ACS-Income-CA	$195,\!665$	2	1 & 2	New dataset
Default of Credit Card Clients	30,000	2	1	

Experimental setup - Models

- Logistic Regression
- Multilayer Perceptron Model

Reproducibility experiments

2	
Long-term (un)fairness check	
(Claim 2)	

Reproducibility experiments

• Reported (left side) and Reproduced (right side) Error rate and EI Disparity values of ERM and three proposed methods for achieving EI with a Logistic Regression model.

Dataset	Metric	ERM	Covariance-Based	KDE-Based	Loss-Based
Synthetic	Error Rate EI Disp.	.221 .222 .117 .118	.253 .253 .003 .003	$.250 \mid .253$ $.003 \mid .003$.246 .246 .002 .002
German Stat.	Error Rate EI Disp.	.220 .262 .041 .021	$\begin{array}{c} .262 \mid .262 \\ .021 \mid .022 \end{array}$.243 .249 .035 .226	$.237 \mid .237 \\ .015 \mid .016$
ACSIncome-CA	Error Rate EI Disp.	.184 .185 .031 .031	.200 .200 .008 .008	$.196 \mid .196 \\ .005 \mid .005$	$.193 \mid .195 \\ .006 \mid .006$

Reproducibility Experiments

- The disparity between the sensitive group feature distributions reduces faster for the El classifier than for the other metrics.
- This indicates that EI classifier is more favorable for achieving long-term fairness.

Reproducibility Experiments

 Error rate and EI disparities of ERM and the proposed EI-regularized methods on an overparameterized Multilayer perceptron (MLP) using a subset of German Statlog Credit dataset.

Metric	ERM	Covariance-Based	KDE-Based	Loss-Based
Train Error	.218 \pm .004	$.233 \pm .003$	$.226$ \pm $.009$	$.233\pm.012$
Test Error	$.218\pm.010$	$.218 \pm .010$	$.222$ \pm $.007$	$.231\pm.007$
Train EI Disp.	$.024\pm.017$	$.018 \pm .011$	$.018\pm.012$	$.009\pm.009$
Test EI Disp.	$.064\pm.036$	$.050 \pm .024$	$.070\pm.050$	$.062 \pm .015$

Reproducibility experiments

Extended analysis

Evaluating El Disparity and Error Rate values on a different dataset

(Claim 1)

2 Adding another sensitive feature

(Claim 1)

3

Long-term fairness with multiple sensitive features

(Claim 2)

4 Overfitting robustness check with a more complex model (Claim 3)

Result 1 – El Disparity and Error Rate values on a different datasets

• EI-based classifiers still have a lower EI disparity without causing a significant increase in the error rate on the new dataset.

Error Rate for Credit Card Dataset

EI Disparity for Credit Card Dataset

Ŵ

Result 2 – Adding another sensitive feature (Sex and Age)

• The measured EI Disparity for the original datasets using ERM and each of the 3 penalty terms optimized for 2 sensitive features.

Result 2 – Adding another sensitive feature (Sex and Age)

• The results indicate that EI Disparity of the proposed methods can still be low, without significantly increasing the Error Rate even with 2 sensitive features.

Error Rate by Dataset

UNIVERSITEIT VAN AMSTERDAM

Ň

Result 3 – Long Term fairness with multiple sensitive features

The disparity between the feature distributions of different sensitive groups reduces faster for the EI classifier

Feature 1

Feature 2

17

Result 4 – Overfitting robustness

- Error rate and EI disparities of ERM and the proposed EI-regularized methods on an overparameterized Multilayer perceptron (MLP) using a subset of ACS-Income dataset.
- The error rate and EI disparity values for all methods are indicative of overfitting

Conclusion

- The reproducibility study proved the general claims of the original paper.
- Experiments on a different dataset also support the claims.
- Experiments with 2 sensitive features produced the results that were in line with the authors' claims except for the Loss-based method.
- Further experiments did not substantiate El's robustness to overfitting.

Thank you for your attention!