

Fair Attribute Completion on Graph with Missing Attributes

University of Amsterdam

Gijs de Jong

Macha Meijer

Derck W.E. Prinzhorn

Harold Ruiter

Introduction

- Missing attributes in graph data
- Graph data might be biased [1]
- Fair Attribute Completion on Graph with Missing Attributes (FairAC) [2]

Figure 1: FairAC framework [2]

Metrics

Group fairness:

- Statistical Parity:
 - $\Delta SP = P(\hat{y}|s=0) P(\hat{y}|s=1)$ [3]
- Equal Opportunity:
 - ► $\Delta \text{EO} = P(\hat{y} = 1 | s = 0, y = 1) P(\hat{y} = 1 | s = 1, y = 1)$ [4]

Baselines

- GCN Graph NN without fairness
- FairGNN in-processing graph fairness method

Claims

- FairAC can be used for graph attribute completion and addresses both feature and topological unfairness in the graph embeddings
- FairAC is effective in eliminating unfairness while maintaining an accuracy comparable to other methods
- 3. Adversarial learning is necessary to obtain a better performance on group fairness
- 4. FairAC is effective even if a large amount of the **attributes** are **completely missing**
- FairAC is generic and can be used in many graph-based downstream tasks

FairAC addresses both feature and topological unfairness in the graph embeddings

Figure 2: FairAC framework [2]

FairAC is effective in eliminating unfairness while maintaining an accuracy comparable to other methods

Model	Accuracy	AUC	Δ SP+ Δ EO
GCN	65.10 ± 0.24	68.42 ± 0.12	3.08 ± 1.68
FairGNN	68.16 ± 0.59	75.67 ± 0.52	4.73 ± 1.47
FairAC	65.33 ± 0.30	71.20 ± 1.74	0.68 ± 0.09

Table 1: Results on Pokec-z dataset

Adversarial learning is necessary to obtain a better performance on group fairness

Figure 3: Adversarial learning experiment

FairAC is effective even if a large amount of the attributes are completely missing

Figure 4: Attribute missing rate experiment

FairAC is generic and can be used in many graph-based downstream tasks

Dataset	Accuracy	AUC	Δ SP+ Δ EO
NBA	66.51 ± 1.09	75.69 ± 1.31	0.19 ± 0.08
Pokec-n	67.00 ± 1.93	72.57 ± 1.68	0.58 ± 0.76
Pokec-z	65.33 ± 0.30	71.20 ± 1.74	0.68 ± 0.09

Table 2: Results of FairAC on various datasets

Additional work

Genericity of FairAC

- Other datasets
- Different sensitive attributes

Genericity: Datasets

- Original: Pokec and NBA
- New: Credit and Recidivism

Dataset	Accuracy ↑	AUC ↑	Δ SP+ Δ EO \downarrow
Credit	69.78 ± 2.94	65.13 ± 0.07	1.18 ± 0.29
Recidivism	63.03 ± 1.17	70.32 ± 13.02	0.04 ± 0.08

Table 3: Results of FairAC on various datasets

Genericity: Sensitive attributes

- Feature that should not appear in node embeddings
- Gender and age in addition to region

Model	Accuracy ↑	AUC ↑	Δ SP+ Δ EO \downarrow
GCN	63.40 ± 0.20	68.56 ± 0.40	6.24 ± 1.13
FairGNN	64.25 ± 0.41	72.25 ± 2.49	4.90 ± 0.77
FairAC	66.44 ± 0.47	73.39 ± 0.20	0.96 ± 0.52

Table 4: Results on Pokec-z dataset with gender as sensitive attribute

Genericity: Sensitive attributes

Model	Accuracy ↑	AUC ↑	Δ SP+ Δ EO \downarrow
GCN	64.94 ± 1.11	71.33 ± 1.94	45.26 ± 6.96
FairGNN	65.79 ± 0.20	72.53 ± 1.42	77.07 ± 6.70
FairAC	65.82 ± 0.69	74.26 ± 0.42	47.36 ± 4.38

Table 5: Results on Pokec-z dataset with age as sensitive attribute

Claims

 ✓ FairAC can be used for graph attribute completion and addresses both feature and topological unfairness in the graph embeddings
✓ FairAC is effective in eliminating unfairness while maintaining an accuracy comparable to other methods

✓ Adversarial learning is necessary to obtain a better performance on group fairness

✓ FairAC is effective even if a large amount of the attributes are completely missing

 \sim FairAC is **generic** and can be used in many graph-based **downstream** tasks

Additional work

Genericity of FairAC

- Other datasets
- Different sensitive attributes

Fairness trade-off

Individual fairness

Individual fairness

- Trade-off between individual fairness and group fairness [5]
- Consistency [6]

Model	Accuracy ↑	AUC ↑	Δ SP+ Δ EO \downarrow	Consistency ↑
GCN	65.10 ± 0.24	68.42 ± 0.12	3.08 ± 1.68	41.35 ± 0.01
FairGNN	68.16 ± 0.59	75.67 ± 0.52	4.73 ± 1.47	41.35 ± 0.01
FairAC	65.33 ± 0.30	71.20 ± 1.74	0.68 ± 0.09	41.33 ± 0.00

Table 6: Results on Pokec-z dataset

Conclusion

- FairAC is reproducible
- And generic for the given task
- Minimal group fairness-individual fairness trade-off

Bibliography

- [1] E. Dai and S. Wang, "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information." 2021.
- [2] D. Guo, Z. Chu, and S. Li, "Fair Attribute Completion on Graph with Missing Attributes." 2023.
- [3] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, "Fairness Through Awareness." 2011.
- [4] M. Hardt, E. Price, and N. Srebro, "Equality of Opportunity in Supervised Learning." 2016.
- [5] R. Binns, "On the apparent conflict between individual and group fairness," in *Proceedings of the 2020 conference on fairness, accountability, and transparency,* 2020, pp. 514–524.
- [6] P. Xu, Y. Zhou, B. An, W. Ai, and F. Huang, "GFairHint: Improving Individual Fairness for Graph Neural Networks via Fairness Hint." 2023.