

Generic Unsupervised Optimization for a Latent Variable Model With Exponential Family Observables

Hamid Mousavi, Jakob Drefs, Florian Hirschberger, Jörg Lücke

ML Lab, University of Oldenburg, Germany NeurIPS, 2024

Proposed Latent Variable Models

- We propose Exponential Family Maximal Causes Analysis (EF-MCA).
- Main features of the proposed models are:
 - · Binary latent variables
 - Exponential family observables
 - Maximum non-linear superposition

$$p(\vec{s} | \Theta) = \prod_{h=1}^{H} \pi_h^{s_h} (1 - \pi_h)^{1 - s_h}$$
$$p(\vec{y} | \vec{s}, \Theta) = \prod_{d=1}^{D} p(y_d; \vec{\eta}_d(\vec{s}, \Theta))$$
where $p(y; \vec{\eta}) = h(y) \exp\left(\vec{\eta}^T \vec{T}(y) - A(\vec{\eta})\right)$

Generic Parameter Optimization

Theorem. Consider the proposed family of generative models with the given non-linear link function and assume a two-parameter distribution of the exponential family. Then the derivatives of the free energy (a.k.a. ELBO) w.r.t. parameters $\theta = (W, V, \vec{\pi})$ is zero, if for each *d* and *h*, we let:

$$W_{dh} = \frac{\sum_{n=1}^{N} \langle \mathcal{A}_{dh}(\vec{s}, \Theta) \rangle_{q^{(n)}} T_1(y_d^{(n)})}{\sum_{n=1}^{N} \langle \mathcal{A}_{dh}(\vec{s}, \Theta) \rangle_{q^{(n)}}}$$
$$V_{dh} = \frac{\sum_{n=1}^{N} \langle \mathcal{A}_{dh}(\vec{s}, \Theta) \rangle_{q^{(n)}} T_2(y_d^{(n)})}{\sum_{n=1}^{N} \langle \mathcal{A}_{dh}(\vec{s}, \Theta) \rangle_{q^{(n)}}}$$
$$\pi_h = \frac{1}{N} \sum_{n=1}^{N} \langle s_h \rangle_{q^{(n)}}$$

$$M_{dh}(\Theta) := F(W_{dh}, V_{dh}) \text{ where } F(w, v) = \langle y \rangle_{p(y; \vec{\Phi}(w, v))}$$

$$\bar{W}_d(\vec{s}, \Theta) := W_{dh(d, \vec{s}, \Theta)}, \quad \bar{V}_d(\vec{s}, \Theta) := V_{dh(d, \vec{s}, \Theta)} \qquad \qquad \mathcal{A}_{dh}(\vec{s}, \Theta) := \begin{cases} 1 & h = h(d, \vec{s}, \Theta) \\ 0 & \text{otherwise} \end{cases}$$

where $h(d, \vec{s}, \Theta) := \operatorname{argmax}_h \{ M_{dh}(\Theta) \, s_h \}.$

- Initialize the model parameters
- Compute the posteriors and to allow for the large-scaled applications of the models, we use variational approximations in the form of truncated posteriors (we leverage the newly established method called Evolutionary Variational Optimization, EVO):

$$q^{(n)}(\vec{s} \mid \mathcal{K}, \Theta) := \frac{p(\vec{s}, \vec{y}^{(n)} \mid \Theta)}{\sum\limits_{\vec{s}' \in \mathcal{K}^{(n)}} p(\vec{s}', \vec{y}^{(n)} \mid \Theta)} \delta(\vec{s} \in \mathcal{K}^{(n)})$$

• Update the model parameters using:

Guiraud et al., GECCO 2018; Mousavi et al., Entropy 2021; Drefs et al., JMLR 2022; Hirschberger et al., TPAMI 2022.

Experiments – Poisson Denoising

• Comparison of the PSNR (in terms of dB) and ELBO values for Poisson denoising benchmarks at peak value of 1.

,				
Model	Measure	House	Camera	Peppers
BSC	PSNR	22.40	19.91	19.47
	ELBO	-463.70	-418.86	-431.05
ES3C	PSNR	22.37	19.78	19.60
	ELBO	-458.23	-414.08	-426.98
TVAE	PSNR	22.84	20.13	19.57
	ELBO	-459.05	-416.48	-428.83
MCA	PSNR	22.66	19.78	19.33
	ELBO	-457.14	-413.17	-426.07
P-MCA	PSNR	23.54	20.53	20.14
	ELBO	-392.13	-331.15	-355.55

D = 400 H = 100 and 100 variational EM iterations

Henniges et al., LVA 2010; Sheikh et al., JMLR 2014; Drefs et al., JMLR 2022; Sheikh et al., PLOS 2019.